Source Water Protection Plan Marlinton Public Water

PWSID WV3303803

Pocahontas County

April 2016

Prepared by:

Tetra Tech, Inc. 803 Quarrier Street, Suite 400 Charleston, WV 25314

In cooperation with Marlinton Public Water

This page is intentionally blank.

Preparer's Name
Title of Preparer
Name of Contractor/Consultant
I certify the information in the source water protection plan is complete and accurate to the best of my
knowledge.
Signature of responsible party or designee authorized to sign for water utility:
Print Name of Authorizing Signatory:
Title of Authorizing Signatory:
Date of Submission:

This page is intentionally blank.

TABLE OF CONTENTS

1.0 PURPOSE	1
1.1 What are the benefits of preparing a Source Water Protection Plan?	1
2.0 BACKGROUND: WV SOURCE WATER ASSESSMENT AND PROTECTION PROGRAM	2
3.0 STATE REGULATORY REQUIREMENTS	3
4.0 SYSTEM INFORMATION	4
5.0 WATER TREATMENT AND STORAGE	4
6.0 DELINEATIONS	7
7.0 PROTECTION TEAM	9
8.0 POTENTIAL SOURCES OF SIGNIFICANT CONTAMINATION	11
8.1 Confidentiality of PSSCs	11
8.2 Local and Regional PSSCs	11
8.3 Prioritization of Threats and Management Strategies	
9.0 IMPLEMENTATION PLAN FOR MANAGEMENT STRATEGIES	
10.0 EDUCATION AND OUTREACH STRATEGIES	
11.0 CONTINGENCY PLAN	
11.1 Response Networks and Communication	
11.2 Operation During Loss of Power	
11.3 Future Water Supply Needs	
11.4 Water Loss Calculation	
11.5 Early Warning Monitoring System	
12.0 SINGLE SOURCE FEASIBILITY STUDY	
13.0 COMMUNICATION PLAN	
14.0 EMERGENCY RESPONSE SHORT FORM	
15.0 CONCLUSION	30

LIST OF TABLES

Table 1. Population Served by Marlinton Public Water	4
Table 2. Marlinton Public Water Water Treatment Information	5
Table 3. Marlinton Public Water Surface Water Sources	6
Table 4. Marlinton Public Water Groundwater Sources	6
Table 5. Watershed Delineation Information	8
Table 6. Protection Team Member and Contact Information	10
Table 7. Locally Identified Potential Sources of Significant Contamination	12
Table 8. Priority PSSCs or Critical Areas	15
Table 9. Priority PSSC Management Strategies	
Table 10. Education and Outreach Implementation Plan	19
Table 11. Marlinton Public Water Water Shortage Response Capability	20
Table 12. Generator Capacity	22
Table 13. Future Water Supply Needs for Marlinton Public Water	23
Table 14. Water Loss Information	24
Table 15. Early Warning Monitoring System Capabilities	25

APPENDICES

Appendix A. Figures

Appendix B. Early Warning Monitoring System Forms

Appendix C. Communication Plan Template

Appendix D. Single Source Feasibility Study

Appendix E. Supporting Documentation

SOURCE WATER PROGRAM ACRONYMS

AST Aboveground Storage Tank

BMP Best Management Practices

ERP Emergency Response Plan

GWUDI Ground Water Under the Direct Influence of Surface Water

LEPC Local Emergency Planning Committee

OEHS/EED Office of Environmental Health Services/Environmental Engineering Division

PE Professional Engineer

PSSCs Potential Source of Significant Contamination

PWSU Public Water System Utility

RAIN River Alert Information Network

RPDC Regional Planning and Development Council

SDWA Safe Drinking Water Act

SWAP Source Water Assessment and Protection

SWAPP Source Water Assessment and Protection Program

SWP Source Water Protection

SWPA Source Water Protection Area
SWPP Source Water Protection Plan

WARN Water/Wastewater Agency Response Network

WHPA Wellhead Protection Area

WHPP Wellhead Protection Program
WSDA Watershed Delineation Area

WVBPH West Virginia Bureau for Public Health

WVDEP West Virginia Department of Environmental Protection

WVDHHR West Virginia Department of Health and Human Resources

WVDHSEM West Virginia Division of Homeland Security and Emergency Management

ZCC Zone of Critical Concern

ZPC Zone of Peripheral Concern

1.0 PURPOSE

The goal of the West Virginia Bureau of Public Health (WVBPH) source water assessment and protection (SWAP) program is to prevent degradation of source waters which may preclude present and future uses of drinking water supplies to provide safe water in sufficient quantity to users. The most efficient way to accomplish this goal is to encourage and oversee source water protection on a local level. Many aspects of source water protection may be best addressed by engaging local stakeholders.

The intent of this document is to describe what Marlinton Public Water has done, is currently doing, and plans to do to protect its source of drinking water. Although this water system treats the water to meet federal and state drinking water standards, conventional treatment does not fully eradicate all potential contaminants, and treatment that goes beyond conventional methods is often very expensive. By completing this plan, Marlinton Public Water acknowledges that implementing measures to minimize and mitigate contamination can be a relatively economical way to help ensure the safety of the drinking water.

1.1 WHAT ARE THE BENEFITS OF PREPARING A SOURCE WATER PROTECTION PLAN?

- Fulfilling the requirement for the public water utilities to complete or update their source water protection plan.
- Identifying and prioritizing potential threats to the source of drinking water; and establishing strategies to minimize the threats.
- Planning for emergency response to incidents that compromise the water supply by contamination or depletion, including how the public, state, and local agencies will be informed.
- Planning for future expansion and development, including establishing secondary sources of water.
- Ensuring conditions to provide the safest and highest quality drinking water to customers at the lowest possible cost.
- Providing more opportunities for funding to improve infrastructure, purchase land in the protection area, and other improvements to the intake or source water protection areas.

1

2.0 BACKGROUND: WV SOURCE WATER ASSESSMENT AND PROTECTION PROGRAM

Since 1974, the federal Safe Drinking Water Act (SDWA) has set minimum standards on the construction, operation, and quality of water provided by public water systems. In 1986, Congress amended the SDWA. A portion of those amendments were designed to protect the source water contribution areas around ground water supply wells. This program eventually became known as the Wellhead Protection Program (WHPP). The purpose of the WHPP is to prevent pollution of the source water supplying the wells.

The Safe Drinking Water Act Amendments of 1996 expanded the concept of wellhead protection to include surface water sources under the umbrella term of Source Water Protection. The amendments encourage states to establish SWAP programs to protect all public drinking water supplies. As part of this initiative states must explain how protection areas for each public water system will be delineated, how potential contaminant sources will be inventoried, and how susceptibility ratings will be established.

In 1999, the WVBPH published the West Virginia Source Water Assessment and Protection Program, which was endorsed by the United States Environmental Protection Agency. Over the next few years, WVBPH staff completed an assessment (i.e., delineation, inventory and susceptibility analysis) for all of West Virginia's public water systems. Each public water system was sent a copy of its assessment report. Information regarding assessment reports for Marlinton Public Water can be found in **Table 1**.

2

TETRA TECH

3.0 STATE REGULATORY REQUIREMENTS

On June 6, 2014, §16 1 2 and §16 1 9a of the Code of West Virginia, 1931,was reenacted and amended by adding three new sections, designated §16 1 9c, §16 1 9d and §16-1-9e. The changes to the code outlines specific requirements for public water utilities that draw water from a surface water source or a surface water influenced groundwater source.

Under the amended and new codes each existing public water utility using surface water or ground water influenced by surface water as a source must have completed or updated a source water protection plan by July 1, 2016, and must continue to update their plan every three years. Existing source water protection plans have been developed for many public water utilities in the past. If available, these plans were reviewed and considered in the development of this updated plan. Any new water system established after July 1, 2016 must submit a source water protection plan before they start to operate. A new plan is also required when there is a significant change in the potential sources of significant contamination (PSSC) within the zone of critical concern (ZCC).

The code also requires that public water utilities include details regarding PSSCs, protection measures, system capacities, contingency plans, and communication plans. Before a plan can be approved, the local health department and public will be invited to contribute information for consideration. In some instances, public water utilities may be asked to conduct independent studies of the source water protection area and specific threats to gain additional information.

3

4.0 SYSTEM INFORMATION

Marlinton Public Water is classified as a state regulated public utility and operates a community public water system. A community public water system is a system that regularly supplies drinking water from its own sources to at least 15 service connections used by year round residents of the area or regularly serves 25 or more people throughout the entire year. For purposes of this source water protection plan, community public water systems are also referred to as public water utilities. Information on the population served by this utility is presented in **Table 1** below.

Table 1. Population Served by Marlinton Public Water

Administra	ative office location:	709 Second Avenue, Marlinton, WV 24954			
	blic utility, according to the ce Commission rule?		Yes		
Date of Most Recen	nt Source Water Assessment Report:		August 200	03	
Date of Most Rece	nt Source Water Protection Plan:	June 2012			
Populatio	on served directly:	The Marlinton Public Water system directly serves approximately 728 customers (1,820 people*) according to the 2014 PSC Annual Report for Marlinton.			
Bulk Water	System Name		PWSID Number	Population	
Purchaser Systems:	None	N/A N/A			
Total Population Served by the Utility:			The system serves a total of 1,770 people. They do not sell water to any bulk purchaser system.		
Does the utility have multiple source water protection areas (SWPAs)?			No		
How many SWP	As does the utility have?		1		

^{*}Estimated population served is the number of customers served multiplied by 2.5 people per customer.

April 2016 4

5.0 WATER TREATMENT AND STORAGE

As required, Marlinton Public Water has assessed their system (e.g., treatment capacity, storage capacity, unaccounted for water, contingency plans) to evaluate their ability to provide drinking water and protect public health. **Table 2** contains information on the water treatment methods and capacity of the utility. Information about the surface sources from which Marlinton Public Water draws water can be found in **Table 3**. If the utility draws water from any groundwater sources to blend with the surface water the information about these ground water sources can be found in **Table 4**.

Table 2. Marlinton Public Water Treatment Information

Water Treatment Processes (List All Processes in Order)	The treatment plant uses coagulation/flocculation, sedimentation, filtration, fluoridation, and chlorination to treat the water to potable standards.
Current Treatment Capacity (gal/day)	The treatment plant is rated to 432,400 GPD, but is currently only capable of producing around 250,000 GPD due to aging pumps.
Current Average Production (gal/day)	The treatment plant produces an average of around 232,000 gallons/day.
Maximum Quantity Treated and Produced (gal)	According to the 2014 Monthly Operating Reports (MORs), the maximum quantity produced in a single day in the last year was 379,200 gallons on 1/31/14.
Minimum Quantity Treated and Produced (gal)	The minimum produced in a single day in the last year was 111,400 gallons on 6/24/14 (according to 2014 MORs).
Average Hours of Operation	The plant is staffed and operated an average of 16 hours/day.
Maximum Hours of Operation in One Day	The maximum number of hours of operation in a single day in the last year was 24 hours on 1/31/14. The plant was operated for 24 hours on several other occasions as well (according to 2014 MORs).
Minimum Hours of Operation in One Day	The minimum number of hours of operation in a single day in the last year was 6 hours on 5/4/14 (according to 2014 MORs)
Number of Storage Tanks Maintained	The water system maintains 6 treated water storage tanks and 3 booster stations, but one of the tanks is out of commission currently.
Total Gallons of Treated Water Storage (gal)	The total treated water storage capacity is around 719,000 when all tanks are operational, but because the Cemetery Tank #2 is down they have a storage capacity of around 608,750 gallons.
Total Gallons of Raw Water Storage (gal)	The water system does not have any raw water storage.

5

Marlinton Public Water Source Water Protection Plan

Table 3. Marlinton Public Water Surface Water Sources

Intake Name	SDWIS#	Local Name	Describe Intake	Name of Water Source	Date Constructed/ Modified	Frequency of Use (Primary/ Backup/ Emergency)	Activity Status (Active/ Inactive)
River Intake		Knapp Creek Intake	The intake is in a concrete basin located near the bank and just upstream of a small diversion dam. The basin is screened to prevent debris from entering the plant. The intake is located several blocks away from the treatment plant.	Knapp Creek	1983	Primary	Active

Table 4. Marlinton Public Water Groundwater Sources

Does the utility blend with groundwater?								No	
Well/Spring Name	SDWIS #	Local Name	Date Constructed/Modified	Completion Report Available (Yes/No)	Well Depth (ft.)	Casing Depth (ft.)	Grout (Yes/No)	Frequency of Use (Primary/ Backup/ Emergency)	Activity Status (Active/ Inactive)
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

6.0 DELINEATIONS

For surface water systems, delineation is the process used to identify and map the drainage basin that supplies water to a surface water intake. This area is generally referred to as the source water protection area (SWPA). All surface waters are susceptible to contamination because they are exposed at the surface and lack a protective barrier from contamination. Accidental spills, releases, sudden precipitation events that result in overland runoff, or storm sewer discharges can allow pollutants to readily enter the source water and potentially contaminate the drinking water at the intake. The SWPA for surface water is distinguished as a Watershed Delineation Area (WSDA) for planning purposes; and the Zone of Peripheral Concern (ZPC) and Zone of Critical Concern (ZCC) are defined for regulatory purposes.

The WSDA includes the entire watershed area upstream of the intake to the boundary of the State of West Virginia border or a topographic boundary. The ZCC for a public surface water supply is a corridor along streams within the watershed that warrants more detailed scrutiny due to its proximity to the surface water intake and the intake's susceptibility to potential contaminants within that corridor. The ZCC is determined using a mathematical model that accounts for stream flows, gradient and area topography. The length of the ZCC is based on a five-hour time-of-travel of water in the streams to the water intake, plus an additional one-quarter mile below the water intake. Ohio River ZCC delineations are based on ORSANCO guidance and extend 25 miles above the intake. The width of the zone of critical concern is 1,000 feet measured horizontally from each bank of the principal stream and five hundred feet measured horizontally from each bank of the tributaries draining into the principal stream. Ohio River ZCC delineations are based on ORSANCO guidance and extend 25 miles above the intake and one-quarter mile below the intake. The Ohio River ZCC delineations include 1,320 feet (one-quarter mile) measured from the bank of the main stem of the Ohio River and 500 feet on tributary.

The ZPC for a public surface water supply source and for a public surface water influenced groundwater supply source is a corridor along streams within a watershed that warrants scrutiny due to its proximity to the surface water intake and the intake's susceptibility to potential contaminants within that corridor. The ZPC is determined using a mathematical model that accounts for stream flows, gradient and area topography. The length of the zone of peripheral concern is based on an additional five-hour time-of-travel of water in the streams beyond the perimeter of the zone of critical concern, which creates a protection zone of ten hours above the water intake. The width of the zone of peripheral concern is one thousand feet measured horizontally from each bank of the principal stream and five hundred feet measured horizontally from each bank of the tributaries draining into the principal stream.

For groundwater supplies there are two types of SWPA delineations: 1) wellhead delineations and 2) conjunctive delineations, which are developed for supplies identified as groundwater under the direct influence of surface water, or GWUDIs. A wellhead protection area is determined to be the area contributing to the recharge of the groundwater source (well or spring), within a five year time of travel. A conjunctive delineation combines a wellhead protection area for the hydrogeologic recharge and a connected surface area contributing to the wellhead.

Information and maps of the WSDA, ZCC, ZPC and Wellhead Protection Area for this public water supply were provided to the utility and are attached to this report. See **Appendix A. Figures**. Other information about the WSDA is shown in **Table 5**.

7

April 2016

Table 5. Watershed Delineation Information

Size of WSDA (Indicate units)	The watershed delineation area covers approximately 108 square miles
River Watershed Name (8-digit HUC)	Greenbrier River Watershed- 05050003
Size of Zone of Critical Concern (Acres)	The zone of critical concern covers approximately 11,468 acres.
Size of Zone of Peripheral Concern (Acres) (Include ZCC area)	The zone of peripheral concern covers approximately 30,943 acres, including the ZCC.
Method of Delineation for Groundwater Sources	N/A
Area of Wellhead Protection Area (Acres)	N/A

TETRA TECH

7.0 PROTECTION TEAM

One important step in preparing a source water protection plan is to organize a source water protection team who will help develop and implement the plan. The legislative rule requires that water utilities make every effort to inform and engage the public, local government, local emergency planners, the local health department and affected residents at all levels of the development of the protection plan. WVBPH recommends that the water utility invite representatives from these organizations to join the protection team, which will ensure that they are given an opportunity to contribute in all aspects of source water protection plan development. Public water utilities should document their efforts to engage representatives and provide an explanation if any local stakeholder is unable to participate. In addition, other local stakeholders may be invited to participate on the team or contribute information to be considered. These individuals may be emergency response personnel, local decision makers, business and industry representatives, land owners (of land in the protection area), and additional concerned citizens.

The administrative contact for Marlinton Public Water is responsible for assembling the protection team and ensuring that members are provided the opportunity to contribute to the development of the plan. The acting members of the Protection Team are listed in **Table 6**.

The role of the protection team members will be to contribute information to the development of the source water protection plan, review draft plans and make recommendations to ensure accuracy and completeness, and when possible contribute to implementation and maintenance of the protection plan. The protection team members are chosen as trusted representatives of the community served by the water utility and may be designated to access confidential data that contains details about the local PSSCs. The input of the protection team will be carefully considered by the water utility when making final decisions relative to the documentation and implementation of the source water protection plan.

Marlinton Public Water will be responsible for updating the source water protection plan and rely upon input from the protection team and the public to better inform their decisions. To find out how you can become involved as a participant or contributor, visit the utility website or call the utility phone number, which are provided in **Table 6.**

9

Marlinton Public Water Source Water Protection Plan

Table 6. Protection Team Member and Contact Information

Name	Representing	Title	Phone Number	Email
Sam Felton	City of Marlinton	Mayor	304-799-4315	townofmarlinton@frontiernet.net
David K. Johnson	Marlinton Public Water	Chief Operator	304-799-7442	townofmarlinton@frontiernet.net
Cindy Wilfong	Pocahontas County Health Department	Sanitarian	304-799-4154	Cindy.A.Wilfong@wv.gov
Travis Cook	Pocahontas County Emergency Management	-	304-799-4624	tcook@pocahontasemergency.com
J.P. Duncan	Marlinton Fire Department	Assistant Chief		marlintonfire@gmail.com
Don Morrison	Marlinton City Council	City Council Member		donsauction@yahoo.com
Grazia Apolinares	Pocahontas County Water Resource Task Force	Water Resources Coordinator		pocahontash2o@gmail.com
Date of first p	rotection Team Meeting		3/2/2016	
(public, local governr local health departme	n and engage local stakeholders nent, local emergency planners, ent, and affected residents) and recommended stakeholders:	Sam Felton contacted the recommended team members agreement, and meeting To further engage and ed Pocahontas Times that provideveloped for Marlinton. The ability to review and comme "Mayor's Corner" section of the	e team members a were present. The minutes can be fo Documentati ucate the public, the ided details about his article was mea nent on the plan. The paper, and took	ne mayor also ran an article in the the source water plan that had been nt to educate the public about their he article ran for two weeks in the the place of holding a public meeting. and in Appendix E. Supporting

8.0 POTENTIAL SOURCES OF SIGNIFICANT CONTAMINATION

Source water protection plans should provide a complete and comprehensive list of the PSSCs contained within the ZCC based upon information obtained from the WVBPH, working in cooperation with the West Virginia Department of Environmental Protection (WVDEP) and the West Virginia Division of Homeland Security and Emergency Management (WVDHSEM). A facility or activity is listed as a PSSC if it has the potential to release a contaminant that could potentially impact a nearby public water supply, and it does not necessarily indicate that any release has occurred.

The list of PSSCs located in the SWPA is organized into two types: 1) SWAP PSSCs, and 2) Regulated Data. SWAP PSSCs are those that have been collected and verified by the WVBPH SWAP program during previous field investigations to form the source water assessment reports and source water protection plans. Regulated PSSCs are derived from federal and state regulated databases, and may include data from WVDEP, US Environmental Protection Agency, WVDHSEM, and out-of-state data sources.

8.1 CONFIDENTIALITY OF PSSCS

A list of the PSSCs contained within the ZCC should be included in the source water protection plan. However, the exact location, characteristics and approximate quantities of contaminants shall only be made known to one or more designees of the public water utility and maintained in a confidential manner. In the event of a chemical spill, release or other related emergency, information pertaining to the contaminant shall be immediately disseminated to any emergency responders reporting to the site. The designees for Marlinton Public Water are identified in the communication planning section of the source water protection plan.

PSSC data from some agencies (ex. WVDHSEM, WVDEP, etc.) may be restricted due to the sensitive nature of the data. Locational data will be provided to the public water utility. However, to obtain specific details regarding contaminants, (such as information included in Tier II reports), water utilities should contact the local emergency planning commission (LEPC) or agencies, directly. While the maps and lists of the PSSCs and regulated sites are to be maintained in a confidential manner, these data are provided in **Appendix A. Figures** for internal review and planning uses only.

8.2 LOCAL AND REGIONAL PSSCS

For the purposes of this source water protection plan, local PSSCs are those that are identified by the water utility and local stakeholders and are not already identified in the PSSCs lists distributed by the WVBPH and other agencies. Local stakeholders may identify local PSSCs for two main reasons. The first is that it is possible that threats exist from unregulated sources and land uses that have not already been inventoried and do not appear in regulated databases. For this reason each public water utility should investigate their protection area for local PSSCs. A PSSC inventory should identify all contaminant sources and land uses in the delineated ZCC. The second reason local PSSCs are identified is because public water utilities may consider expanding the PSSC inventory effort outside of the ZCC into the ZPC and WSDA if necessary to properly identify all threats that could impact the drinking water source. As the utility considers threats in the watershed they may consider collaborating with upstream communities to identify and manage regional PSSCs.

When conducting local and regional PSSC inventories, utilities should consider that some sources may be obvious like above ground storage tanks, landfills, livestock confinement areas, highway or railroad right of ways, and sewage treatment facilities. Others are harder to locate like abandoned cesspools, underground tanks, French drains, dry wells, or old dumps and mines.

Marlinton Public Water reviewed intake locations and the delineated SWPAs to verify the existence of PSSCs provided by the WVBPH and identify new PSSCs. If possible, locations of regulated sites within the SWPA were confirmed. Information on any new or updated PSSCs identified by Marlinton Public Water and not already appearing in datasets from the WVBPH can be found in Table 7.

11

April 2016

Marlinton Public Water Source Water Protection Plan

Table 7. Locally Identified Potential Sources of Significant Contamination

PS: Num	Map Code	Site Name	Site Description	Relative Risk Score	Comments
-	-		-	-	-

8.3 PRIORITIZATION OF THREATS AND MANAGEMENT STRATEGIES

Once the utility has identified local concerns, they must develop a management plan that identifies specific activities that will be pursued by the public water utility in cooperation and concert with the WVBPH, local health departments, local emergency responders, LEPC and other agencies and organizations to protect the source water from contamination threats.

Depending on the number identified, it may not be feasible to develop management strategies for all of the PSSCs in the SWPA. The identified PSSCs can be prioritized by potential threat to water quality, proximity to the intake(s), and local concern. The highest priority PSSCs can be addressed first in the initial management plan. Lower ranked PSSCs can be addressed in the future as time and resources allow. To assess the threat to the source water, water systems should consider confidential information about each PSSC. This information may be obtained from state or local emergency planning agencies, Tier II reports, facility owner, facility groundwater protection plans, spill prevention response plans, results of field investigations, etc.

In addition to identifying and prioritizing PSSCs within the SWPA, local source water concerns may also focus on critical areas. For the purposes of this source water protection plan, a critical area is defined as an area that is identified by local stakeholders and can lie within or outside of the ZCC. Critical areas may contain one or more PSSCs which would require immediate response to address a potential incident that could impact the source water.

A list of priority PSSCs was selected and ranked by the Marlinton Public Water Protection Team. This list reflects the concerns of this specific utility and may contain PSSCs not previously identified and not within the ZCC or ZPC. **Table 8** contains a description of why each critical area or PSSC is considered a threat and what management strategies the utility is either currently using or could use in the future to address each threat.

13

9.0 IMPLEMENTATION PLAN FOR MANAGEMENT STRATEGIES

Marlinton Public Water reviewed the recommended strategies listed in their previous source water protection plan, to consider if any of them should be adopted and incorporated in this updated plan. **Table 9** provides a brief statement summarizing the status of the recommended strategies. **Table 9** also lists strategies from a previous plan that are being incorporated in this plan update

When considering source management strategies and education and outreach strategies, this utility has considered how and when the strategies will be implemented. The initial step in implementation is to establish responsible parties and timelines to implement the strategies. The water utility, working in conjunction with the Protection Team members, can determine the best process for completing activities within the projected time periods. Additional meetings may be needed during the initial effort to complete activities, after which the Protection Team should consider meeting annually to review and update the Source Water Protection Plan. A system of regular updates should be included in every implementation plan.

Proposed commitments and schedules may change but should be well documented and reported to the local stakeholders. If possible, utilities should include cost estimates for strategies to better plan for implementation and possible funding opportunities. Marlinton Public Water has developed an implementation plan for priority concerns listed in **Table 8**. The responsible team member, timeline, and potential cost of each strategy are presented in **Table 9**. Note: Because timelines may change, future plan updates should describe the status of each strategy and explain the lack of progress. The responsible team member, timeline, and potential cost of each strategy was estimated and is presented in **Table 9**.

Marlinton Public Water Source Water Protection Plan

Table 8. Priority PSSCs or Critical Areas

PSSC or Critical Area	Priority Number	Reason for Concern
Highway Traffic	1	Highways run over and near Knapp Creek. If an accident were to occur, it may be difficult to contain spill materials and these could potentially contaminate the source water.
Rights-of-Way Maintenance	2	Rights-of-way along pipelines, power lines, and highways are typically maintained with herbicides that can migrate into the water supply. Highway road salt use can also migrate into the water supply. In some areas of WV, the Department of Transportation is using salt brine from oil and gas wells for deicing purposes.
Private Septic and Public Waste Water Systems	3	There are private individual septic systems and public waste water systems located in or near the ZCC. Accidental releases or line breaks may allow untreated sewage to contaminate the surface water source. Untreated sewage contains total coliform, particularly E. coli, along with other bacteria and parasites that could negatively impact human health if treatment processes are not adjusted to address the contamination. Failing private septic systems can leach into surrounding soils or run off into surface water and potentially contaminate the water supply.
Potential Industrial Development	4	In the past, Boxley Aggregates had applied for a permit to quarry sand near the ZCC within the watershed. The quarry was not built given local concerns. However, the company may still have a stake in the property.

Table 9. Priority PSSC Management Strategies

PSSC or Critical Area	Management Activity	Responsible Protection Team Member	Status/ Schedule	Comments	Estimated Cost
Previous Plan Status	There were 6 management strategies recommended in the existing plan. 2 of these strategies have been fully implemented or are no longer a concern for the utility. 4 of these are ongoing or continue to be a concern. These are incorporated in this plan update and listed below.	-	-	-	

15 April 2016

Highway Traffic	Marlinton Public Water will continue to coordinate with emergency officials to be better prepared in the event of a hazardous spill. The Town of Marlinton participates in roundtable discussions with area emergency response personnel from Emergency Services, the fire department, and other municipalities in the county once a year. Pocahontas County Emergency Management has proposed conducting a commodity flow study of the county as well. This proposal has been accepted and the study will be conducted in the near future. Marlinton Public Water will use this information to determine possible threats to the water source.	PWS staff and operator	Ongoing coordination. Access the results of the commodity flow study once it is complete	The Marlinton Volunteer Fire Department recently hired to full time staff members who are developing a hazardous waste team.	See below for possible funding.
Rights-of-Way Maintenance	Contact the appropriate utilities and WV Division of Highways (WVDOH) to determine the herbicides used within the ROW and any other chemicals used. Herbicide labeling is developed with guidance from the USEPA providing information on application.	PWS staff and operator	When resources become available.	Note: Herbicide labeling is developed with guidance from the USEPA providing information on application. This guidance has been developed with public health in mind and may list restrictions for application to prevent herbicide migration into water supplies.	Minimal costs associated with staff time.
Private Septic and Public Waste Water Systems	Work with the county health department to identify areas in the SWPA where home owners may need to install septic systems or service existing systems. The Pocahontas County Water Resources Task Force (working in cooperation with other groups) has developed an initiative to address the problem of failing and poorly maintained septic systems in the Knapp Creek Watershed. This partnership prioritizes those systems that need the most attention and works with participating landowners to replace failing septic systems.	Utility staff and participating organizations	Ongoing Efforts	A report of the PCC Knapp Creek Septic System Program is attached in Appendix E. Supporting Documentation .	Minimal cost associated with staff time.
Potential Industrial Development	When Boxley Aggregate applied for a permit to develop a quarry near the ZCC, officials from Pocahontas County and City of Marlinton partnered with a non-profit environmental advocacy group in blocking the quarry development. The concerns were with the potential negative impacts to the aquatic life, county's fishing/hunting industry,	PWS staff and operator	Ongoing	Pocahontas County Commission has identified a Pocahontas County Water Resources Task Force. The Town of Marlinton regularly participates with this group and supports their objectives to assess and protect the county water resources.	Pocahontas County Water Resources Task Force has received grant funding from the US Forest

Marlinton Public Water Source Water Protection Plan

	and the town's drinking water source. While the quarry was not developed at the time, Boxley Aggregate may continue to have a stake in the property and could consider development in the future. If so, the Town of Marlinton will continue to raise awareness of the source water vulnerability to the company and ask to be considered.				Service. Participation/c ooperation in the project would require minimal costs associated with staff time.
Source Water Protection Plan	Update this Source Water Protection Plan at least every 3 years as required by the State Code of West Virginia.	Source Water Protection Team	Every 3 years. Next update in 2019	The Protection Plan should also be updated any time there is a significant change within the protection area or in utility staff. Yearly meetings of the protection team are recommended to ensure all members are up to date and informed about any developments within the protection area.	Minimal costs associated with team members' time
Future Development and Other Activities Within the Watershed	Water utility staff will perform a yearly "windshield survey" of the zone of critical concern. They will note changes in land use, water quality, and other developments that may have occurred since the previous year's survey. These changes will be documented and reflected in future source water protection plan updates.	Water utility staff	Yearly, next survey in 2017	Document the date of the survey and any changes that may have occurred within the ZCC that could impact water quality.	Minimal cost associated with staff time
Yearly Source Water Protection Team Meetings	The Protection Team for Marlinton Public Water will meet on a yearly basis to discuss any changes that might have occurred within the watershed or to find replacements for members who can no longer participate on the team.	Source Water Protection Team	Yearly, next meeting in 2017	-	Minimal cost associated with staff time
Regular Coordination with Emergency Managers	Marlinton Public Water staff have worked in the past with Pocahontas County Office of Emergency Services to respond to emergencies effectively and maintain water service to customers. Utility staff will continue to communicate with these emergency services groups on a regular basis, especially when there is not an ongoing emergency. They will meet yearly as part of the Source Water Protection Team.	Water utility staff and emergency response personnel	Yearly, during regular Protection Team Meetings	-	Minimal cost associated with staff time

17 April 2016

10.0 EDUCATION AND OUTREACH STRATEGIES

The goal of education and outreach is to raise awareness of the need to protect drinking water supplies and build support for implementation strategies. Education and outreach activities will also ensure that affected citizens and other local stakeholders are kept informed and provided an opportunity to contribute to the development of the source water protection plan. Marlinton Public Water has created an Education and Outreach plan that describes activities it has either already implemented or could implement in the future to keep the local community involved in protecting their source of drinking water. This information can be found in **Table 10**.

Marlinton Public Water Source Water Protection Plan

Table 10. Education and Outreach Implementation Plan

Education and Outreach Strategy	Description of Activity	Responsible Protection Team Member	Status/ Schedule	Comments	Estimated Cost
Public Outreach in Local Newspaper	The mayor ran an article in the "Mayor's Corner" section of the local paper, <i>The Pocahontas Times</i> , for two weeks. The article provided information about the importance of source water protection planning and about Marlinton's updated plan. It also informed the public about their right to review and comment on the updated plan, and encouraged public involvement in the process.	Mayor of Marlinton	Article ran from 2/25/2016 to 3/10/2016	This article fulfilled a required portion of the source water protection planning process. The mayor received no input or suggestions as a result of the public engagement. A scanned copy of the article is attached in Appendix E. Supporting Documentation.	Minimal cost associated with utility staff time to answer questions and provide guidance
Public Meeting	The water utility could also hold an informational meeting with local residents about source water protection efforts. The meeting would increase awareness of the connection between land use and drinking water quality.	Utility Staff	Yearly	This meeting could be structured as a water fair/public event with drinking water displays and activities. This could be combined with activities of the local watershed associations.	Minimal cost associated with utility staff and protection team time
Consumer Confidence Report	The water system publishes a Consumer Confidence Report (CCR) annually, as required by the Safe Drinking Water Act, which is sent to all water customers. Information concerning the Source Water Assessment is included in the CCR. In the future, the system could include a reference to this source water protection plan and how customers can access a copy.	Utility Staff	Yearly	This would be in addition to required Source Water Assessment information, including source of water and susceptibility to contamination.	CCR required by SDWA, included in annual budget
Brochures, pamphlets, and letters	Utility staff could send a letter and/or brochure providing educational information to residences and businesses. These will alert the recipients of the need for source water protection and conservation. Businesses that use greater-than-household quantities of regulated substances may receive a different letter.	Utility Staff	Within a year	See example brochure attached in Appendix E. Supporting Documentation	Cost in brochure printing and mailing.
Work with Pocahontas County Commission Water Resources Task Force	The Pocahontas County Commission Water Resources Task Force (WRTF) formed in 2008 to create a comprehensive water resources management plan for the county. The WRTF is involved with water resource protection across Pocahontas County. Marlinton Public Water has worked with this group in the past and will do so in the future as necessary.	Utility Staff	Ongoing	Information about the WRTF can be found at the link below, or by calling: 304-376-1996 http://www.pocahontaswater.org/index.html	Cost associated with participation in activities.

19 April 2016

11.0 CONTINGENCY PLAN

The goal of contingency planning is to identify and document how the utility will prepare for and respond to any drinking water shortages or emergencies that may occur due to short and long term water interruption, or incidents of spill or contamination. During contingency planning, utilities should examine their capacity to protect their intake, treatment, and distribution system from contamination. They should also review their ability to use alternative sources and minimize water loss, as well as their ability to operate during power outages. In addition, utilities should report the feasibility of establishing an early warning monitoring system and meeting future water demands.

Isolating or diverting any possible contaminant from the intake for a public water system is an important strategy in the event of an emergency. One commonly used method of diverting contaminants from an intake is establishing booms around the intake. This can be effective, but only for contaminants that float on the surface of the water. Alternatively, utilities can choose to pump floating contaminants from the water or chemically neutralize the contaminant before it enters the treatment facility.

Public utilities using surface sources should be able to close the intake by one means or another. However, depending upon the system, methods for doing so could vary greatly and include closing valves, lowering hatches or gates, raising the intake piping out of the water, or shutting down pumps. Systems should have plans in place in advance as to the best method to protect the intake and treatment facility. Utilities may benefit from turning off pumps and, if possible, closing the intake opening to prevent contaminants from entering the piping leading to the pumps. Utilities should also have a plan in place to sample raw water to identify the movement of a contaminant plume and allow for maximum pumping time before shutting down an intake (See Early Warning Monitoring System). The amount of time that an intake can remain closed depends on the water infrastructure and should be determined by the utility before an emergency occurs. The longer an intake can remain closed in such a case, the better.

Raw and treated water storage capacity also becomes extremely important in the event of such an emergency. Storage capacity can directly determine how effectively a water system can respond to a contamination event and how long an intake can remain closed. Information regarding the water shortage response capability of Marlinton Public Water is provided in **Table 11**.

11.1 RESPONSE NETWORKS AND COMMUNICATION

Statewide initiatives for emergency response, including source water related incidents, are being developed. These include the West Virginia Water/Wastewater Agency Response Network (WV WARN, see http://www.wvwarn.org/) and the Rural Water Association Emergency Response Team (see http://www.wvrwa.org/). Marlinton Public Water has analyzed its ability to effectively respond to emergencies and this information is also provided in **Table 11**.

Table 11. Marlinton Public Water Shortage Response Capability

Can the utility isolate or divert contamination from the intake or groundwater supply?	Yes		
Describe the utility's capability to isolate or divert potential contaminants:	The utility has access to booms they could deploy to protect the intake from surface contaminants.		
Can the utility switch to an alternative water source or intake that can supply full capacity at any time?	No		

April 2016 20

Describe in detail the utility's capability to switch to an alternative source:	The utility does not have access to an alternative source of raw water that can fully support the treatment plant. They could possibly run a temporary line to the Greenbrier River to pump water back to the treatment plant during an emergency, but this would only be a temporary solution. Also, in the past they have treated water from the Greenbrier with the WV Rural Water Association's portable treatment facility or brought in tankers through the National Guard.	
Can the utility close the water intake to prevent contamination from entering the water supply?	Yes	
How long can the intake stay closed?	If the tanks were full and usage is consistent with average daily demand, the intake could only stay closed for approximately 24 hours before the Greenbrier Hill Tank was empty. The rest of the tanks in the system could last longer.	
Describe the process to close the intake:	The operator can manually close a valve that will shut off the plant from the intake.	
	The Town of Marlinton has 5 active treated water storage tanks and one that is currently out of commission. They also have 3 booster pump stations (BPS).	
	Greenbrier Hill Tank- 193,750 gal.	
	Cemetery Tank #1- 100,000 gal.	
Describe the treated water storage	Cemetery Tank #2- 100,000 gal. (Out of Commission)	
capacity of the water system:	South Tank- 105,000 gal.	
	North Tank- 105,000 gal.	
	Brush Country Tank- 105,000 gal.	
	Total Active Treated Water Storage- 608,750 gal.	
	The utility does not have raw water storage.	
Is the utility a member of WVRWA Emergency Response Team?	No. The utility is a member of WV Rural Water Association but not the Emergency Response Team.	
Is the utility a member of WV-WARN?	No	
List any other mutual aid agreements to provide or receive assistance in the event of an emergency:	The utility does not have any formal or informal mutual aid agreements because there are no nearby water systems.	

11.2 OPERATION DURING LOSS OF POWER

Marlinton Public Water analyzed its ability to operate effectively during a loss of power. This involved ensuring a means to supply water through treatment, storage, and distribution without creating a public health emergency. Information regarding the utility's capacity for operation during power outages is summarized in **Table 12**.

Table 12. Generator Capacity

What is the type and capacity of the generator needed to operate during a loss of power?			The utility currently has a 150 KVA 120 kW generator at the water treatment plant, and several smaller portable gasoline generators that can be transported between booster stations.			
Can the utility connect to generator at intake/wellhead? If yes, select a scenario that best describes system.			No. Water is gravity fed from the intake in Knapp Creek to the treatment plant, so there is no need for a generator.			
Can the utility connect to generator at treatment facility? If yes, select a scenario that best describes system.			Yes- There is a 150 KVA 120 kW diesel generator at the treatment plant that is hardwired and ready to turn on, but it must be manually engaged.			
Can the utility connect to a generator in distribution system? If yes, select a scenario that best describes system.			Yes-All three booster stations have quick connect capability and can be powered by small portable gasoline generators that are stored in the local garage.			
Does the utility have hand for the g		el on	Yes			
			Gallons		Hours	
how long will it last	What is your on-hand fuel storage and how long will it last operating at full capacity?		Unknown	The diesel storage will last approximately 32-48 hours if the generator is used continuously.		
		5	Supplier		Phone Number	
Provide a list of	Generator		Walker Caterpillar in Summersville, WV		304-872-4303	
suppliers that could provide generators	Generator	Unit	Inited Rentals- Roanoke, VA		540-427-7019	
and fuel in the event of an emergency:	Fuel	Woo	Woodford Oil- Marlinton, WV or Elkins, WV		(Marlinton) 304-799-4503 (Elkins) 304-636-2688	
					,	
	Fuel	Burn	s Motor Freight- Marlir WV	nton,	304-799-6106	
Does the utility test periodic	the generato		WV Yes. The utility run	ıs a moı	304-799-6106 nthly 30 minute test on the diesel or at the plant.	
	the generato ally?	r(s)	WV Yes. The utility run	ıs a moı	nthly 30 minute test on the diesel	

April 2016 22 **1.**

11.3 FUTURE WATER SUPPLY NEEDS

When planning for potential emergencies and developing contingency plans, a utility needs to not only consider their current demands for treated water but also account for likely future needs. This could mean expanding current intake sources or developing new ones in the near future. This can be an expensive and time consuming process, and any water utility should take this into account when determining emergency preparedness. Marlinton Public Water has analyzed its ability to meet future water demands at current capacity, and this information is included in **Table 13**.

Table 13. Future Water Supply Needs for Marlinton Public Water

Is the utility able to meet water demands with the current production capacity over the next 5 years? If so, explain how you plan to do so.	Yes. Even though the water treatment plant sometimes operates at as much as 85% capacity, the utility does not expect any significant changes in population in the service area and should be able to handle the demand. No water line extensions are planned for the next five years, and there is no expected increase in population. The water system's opinions concerning the demand for the next five years are generally supported by population trends projected based on US Census Bureau 2000 and 2010 data. According to the 2005 Interim State Population Projections (1), WV as a whole will see a population decline between 2010 and 2030. In addition, researchers at the WVU College of Business and Economics specifically project that populations within Pocahontas County will decrease from population of 8,719 in 2010 to a projected population of 8,122 in 2020 (2). Census data and projections cannot account for increases in daily demand due to water line extensions. If in the future water line extension projects are proposed the daily demands will be reassessed to determine if the source and treatment facilities can support increased demand
If not, describe the circumstances and plans to increase production capacity:	N/A

- (1) US Department of Commerce, United State Census Bureau. 2005 Interim State Population Projections. Table 1. http://www.census.gov/population/projections/data/state/projectionsagesex.html. Accessed June 10, 2015.
- (2) Christiadi, Ph.D., Deskins, John, Ph.D., Lego, Brian. WVU College of Business and Economics, Bureau of Business and Economic Research. March 2014. WVU Research Corporation. http://be.wvu.edu/bber/pdfs/BBER-2014-04.pdf Accessed June 10, 2015.

11.4 WATER LOSS CALCULATION

In any public water system there is a certain percentage of the total treated water that does not reach the customer. Some of this water is used in treatment plant processes such as back washing filters or flushing piping, but there is usually at least a small percentage that goes unaccounted for. To measure and report on this unaccounted for water, a public utility must use the method described in the Public Service Commission's rule, *Rules for the Government of Water Utilities*, 150CSR7, section 5.6. The rule defines unaccounted for water as the volume of water introduced into the distribution system less all metered usage and all known non-metered usage which can be estimated with reasonable accuracy.

To further clarify, metered usages are most often those that are distributed to customers. Non-metered usages that are being estimated include usage by fire departments for fires or training, un-metered bulk sells, flushing to maintain the distribution system, and water used for backwashing filters and cleaning settling basins. By totaling the known metered and non-metered uses the utility calculates unaccounted for water. Note: To complete annual reports submitted to the PSC, utilities typically account for known water main breaks by estimating the amount of water lost. However, for the purposes of the source water protection plan, any water lost due to leaks, even if the system is aware of how much water is lost at a main break, is not considered a use. Water lost through leaks and main breaks cannot be controlled during a water shortages or other emergencies and should

be included in the calculation of percentage of water loss for purposes of the source water protection plan. The data in **Table 14** is taken from the most recently submitted Marlinton Public Water PSC Annual Report.

Table 14. Water Loss Information

Total W	94,075,000				
Total Wa	0				
Total Water Pu	94,075,000				
	Mains, Plants, Filters, Flushing, etc.	0			
Water Loss Accounted for Except Main Leaks	Fire Department	0			
(gal)	Back Washing	606,000			
	Blowing Settling Basins	0			
Total Water Loss Ac	Total Water Loss Accounted For Except Main Leaks				
Water Sol	d- Total Gallons (gal)	27,117,000			
Unaccounte	ed For Lost Water (gal)	66,352,000			
Water lost	0				
	inted for Lost Water and Water Lost Main Leaks (gal)	66,352,000			
	ited For Water and Water Lost from in Leaks (gal)	71%			

If total percentage of Unaccounted for Water is greater than 15%, please describe any measures that could be taken to correct this problem:

The utility regularly works with the WV Rural Water Association to detect and fix leaks throughout the distribution system. In 2014 they found and fixed a 100,000 gallon per day (GPD) leak, which likely contributed to the high unaccounted for water that year. This incident prompted them to purchase a new leak detector.

Another factor is that the utility only reads meters once every 2 months, so some leaks may go unnoticed for long periods of time.

11.5 EARLY WARNING MONITORING SYSTEM

Public water utilities are required to provide an examination of the technical and economic feasibility of implementing an early warning monitoring system. Implementing an early warning monitoring system may be approached in different ways depending upon the water utility's resources and threats to the source water. A utility may install a continuous monitoring system that will provide real time information regarding water quality

April 2016 24 TETRA TECH

^{*}This information was taken from the 2014 Public Service Commission Annual Report for Marlinton Public Water

conditions. This would require utilities to analyze the data to establish what condition is indicative of a contamination event. Continuous monitoring will provide results for a predetermined set of parameters. The more parameters that are being monitored, the more sophisticated the monitoring equipment will need to be. When establishing a continuous monitoring system, the utility should consider the logistics of placing and maintaining the equipment, and receiving output data from the equipment.

Alternately, or in addition, a utility may also pull periodic grab samples on a regular basis, or in case of a reported incident. The grab samples may be analyzed for specific contaminants. A utility should examine their PSSCs to determine what chemical contaminants could pose a threat to the water source. If possible, the utility should plan in advance how those contaminants will be detected. Consideration should be given to where samples will be collected, the preservations and hold times for samples, available laboratories to analyze samples, and costs associated with the sampling event. Regardless of the type of monitoring (continuous or grab), utilities should collect samples for their source throughout the year to better understand the baseline water quality conditions and natural seasonal fluctuations. Establishing a baseline will help determine if changes in the water quality are indicative of a contamination event and inform the needed response.

Every utility should establish a system or process for receiving or detecting chemical threats with sufficient time to respond to protect the treatment facility and public health. All approaches to receiving and responding to an early warning should incorporate communication with facility owners and operators that pose a threat to the water quality, with state and local emergency response agencies, with surrounding water utilities, and with the public. Communication plays an important role in knowing how to interpret data and how to respond.

Marlinton Public Water has analyzed its ability to monitor for and detect potential contaminants that could impact its source water. Information regarding this utility's early warning monitoring system capabilities is provided in **Table 15** and in **Appendix B**.

Table 15. Early Warning Monitoring System Capabilities

Does your system currently receive spill notifications from a state agency, neighboring water system, local emergency responders, or other facilities? If yes, from whom do you receive notices?		There are no water systems or users upstream of Marlinton to notify them of a spill or contamination, but they have received notices from the Pocahontas County Office of Homeland Security & Emergency Management.			
Are you aware of any facilities, land uses, or critical areas within your protection areas where chemical contaminants could be released or spilled?		There is agricultural land upstream of Marlinton on Knapp Creek as well as a few gas stations, some of which are abandoned and may have underground storage tanks remaining. Knapp Creek runs adjacent to a Rt. 39 for miles and there are several bridge crossings just upstream from Marlinton.			
Are you prepared to detect potential contaminants if notified of a spill?		No			
		Laboratories			
	Name		Contact		
List laboratories (and contact information) on whom you would rely to analyze water	REIC Laboratory- Beaver, WV		REIC Laboratory- Beaver, WV		800-999-0105, 304-255- 2500, info@reiclabs.com
samples in case of a reported spill.	WV State Laboratory, Environmental Chemistry Section- Charleston, WV				304-965-2694
Anal		Analabs- Crab Orchard, WV 1-800-880-6406, analabs@analabsinc.com			

Do you have an understanding of baseline or normal conditions for your source water quality that accounts for seasonal fluctuations?				Yes. The operator takes daily samples for pH, conductivity, and turbidity and has established baseline water quality conditions for Knapp Creek.		
Does your utility currently monitor raw water (through continuous monitoring or periodic grab samples) at the surface water intake or from a groundwater source on a regular basis?				No. See Form B in Appendix A .		
Provide or estimate the	Monitoring System	YSI EXO 2 (B-1)		Hach sc1000 (B-2)	Real Tech Full Scanning Monitoring System (B-3)	
capital and O&M costs for your current or	Capital	Approximate Ca Cost- \$19,00	•	Approximate Capital Cost- \$18,907	Approximate Capital Cost- \$24,155	
proposed early warning system or upgraded system.	rning system r upgraded system. Yearly O & M		tion- ,000 ent ,000	Full service contract with Hach Service Representative- \$2,258 Online Viewer-\$600	Replacement Lamps- \$1,480 Smart-Sense Monitoring Service- \$499	
Do you serve more than 100,000 customers? If so, please describe the methods you use to monitor at the same technical levels utilized by ORSANCO.				No		

April 2016 26 TET

12.0 SINGLE SOURCE FEASIBILITY STUDY

If a public water utility's water supply plant is served by a single—source intake to a surface water source of supply or a surface water influenced source of supply, the submitted source water protection plan must also include an examination and analysis of the technical and economic feasibility of alternative sources of water to provide continued safe and reliable public water service in the event that its primary source of supply is detrimentally affected by contamination, release, spill event or other reason. These alternatives may include a secondary intake, two days of additional raw or treated water storage, an interconnection with neighboring systems, or other options identified on a local level. Note: a suitable secondary intake would draw water supplies from a substantially different location or water source.

To accomplish this requirement, utilities should examine all existing or possible alternatives and rank them by their technical, economic, and environmental feasibility. To have a consistent and complete method for ranking alternatives, WVBPH has developed a feasibility study guide. This guide provides several criteria to consider for each category, organized in a Feasibility Study Matrix. By completing the Feasibility Study Matrix, utilities will demonstrate the process used to examine the feasibility of each alternative and document scores that compare the alternatives. The Feasibility Study matrix and summary of the results are presented in an alternatives feasibility study attached as **Appendix D**.

13.0 COMMUNICATION PLAN

Marlinton Public Water has also developed a Communication Plan that documents the manner in which the public water utility, working in concert with state and local emergency response agencies, shall notify the local health agencies and the public of the initial spill or contamination event and provide updated information related to any contamination or impairment of the system's drinking water supply. The initial notification to the public will occur in any event no later than thirty minutes after the public water system becomes aware of the spill, release, or potential contamination of the public water system. A copy of the source water protection plan and the Communication Plan has been provided to the local fire department. Marlinton Public Water will update the Communication Plan as needed to ensure contact information is up to date.

Procedures should be in place to effectively react to the kinds of catastrophic spills that can reasonably be predicted at the source location or within the SWPA. The chain-of-command, notification procedures and response actions should be known by all water system employees.

The WVBPH has developed a recommended communication plan template that provides a tiered incident communication process to provide a universal system of alert levels to utilities and water system managers. The comprehensive Communication Plan for Marlinton Public Water is attached as **Appendix C** for internal review and planning purposes only.

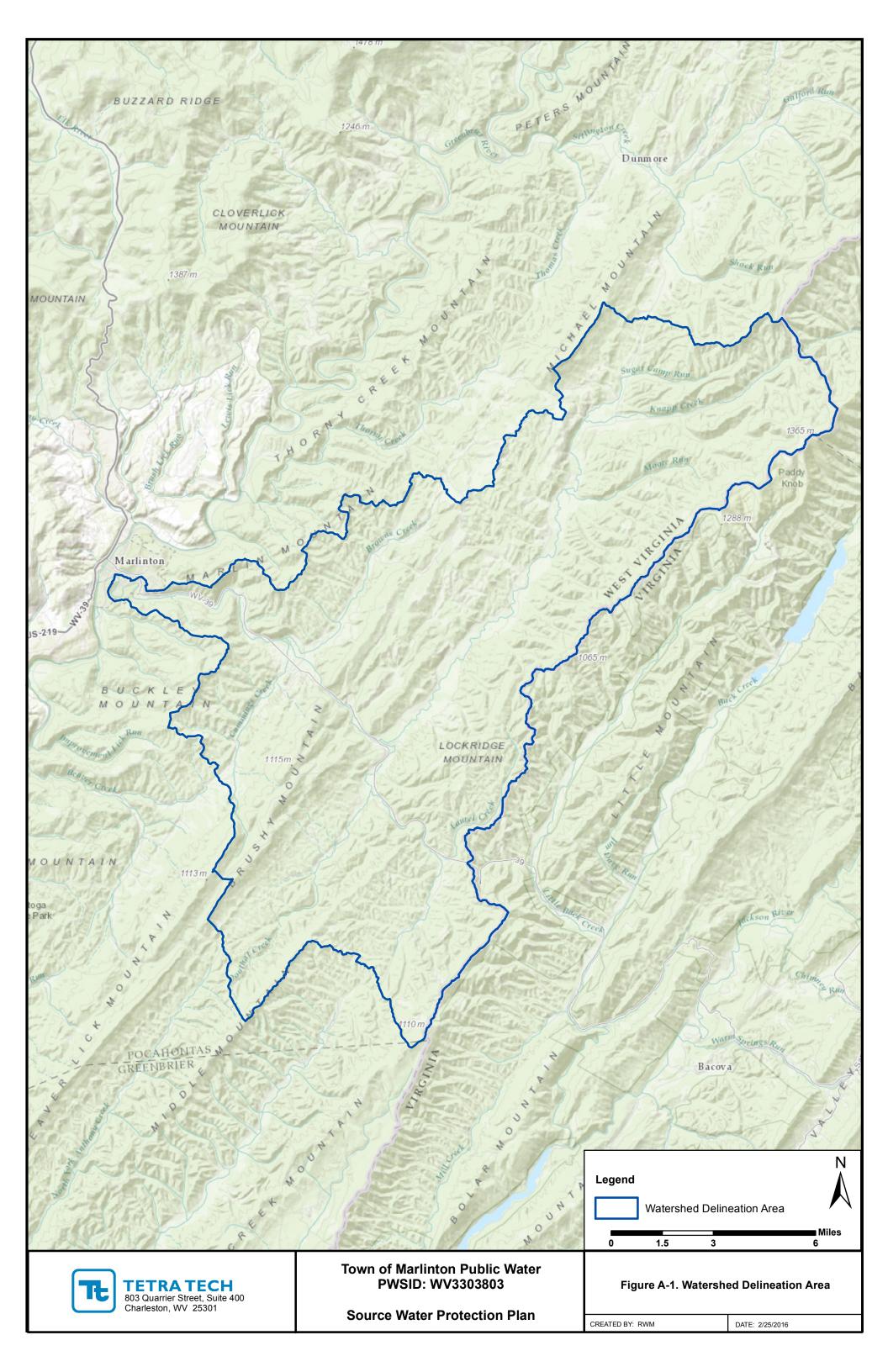
The West Virginia Department of Environmental Protection is capable of providing expertise and assistance related to prevention, containment, and clean-up of chemical spills. The West Virginia Department of Environmental Protection Emergency Response 24-hour Phone is 1-800-642-3074. The West Virginia Department of Environmental Protection also operates an upstream distance estimator that can be used to determine the distance from a spill site to the closest public water supply surface water intake.

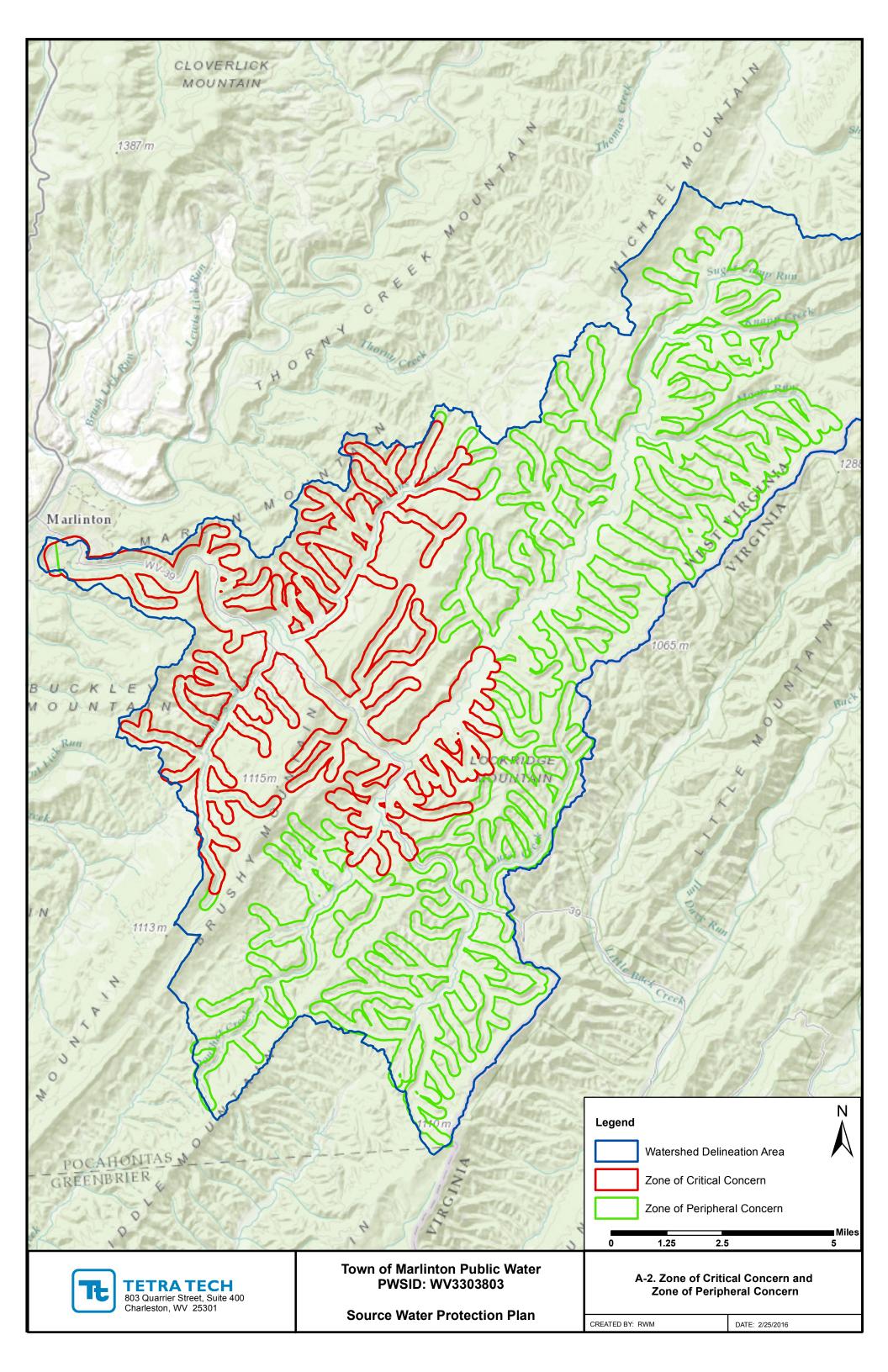
TETRA TECH

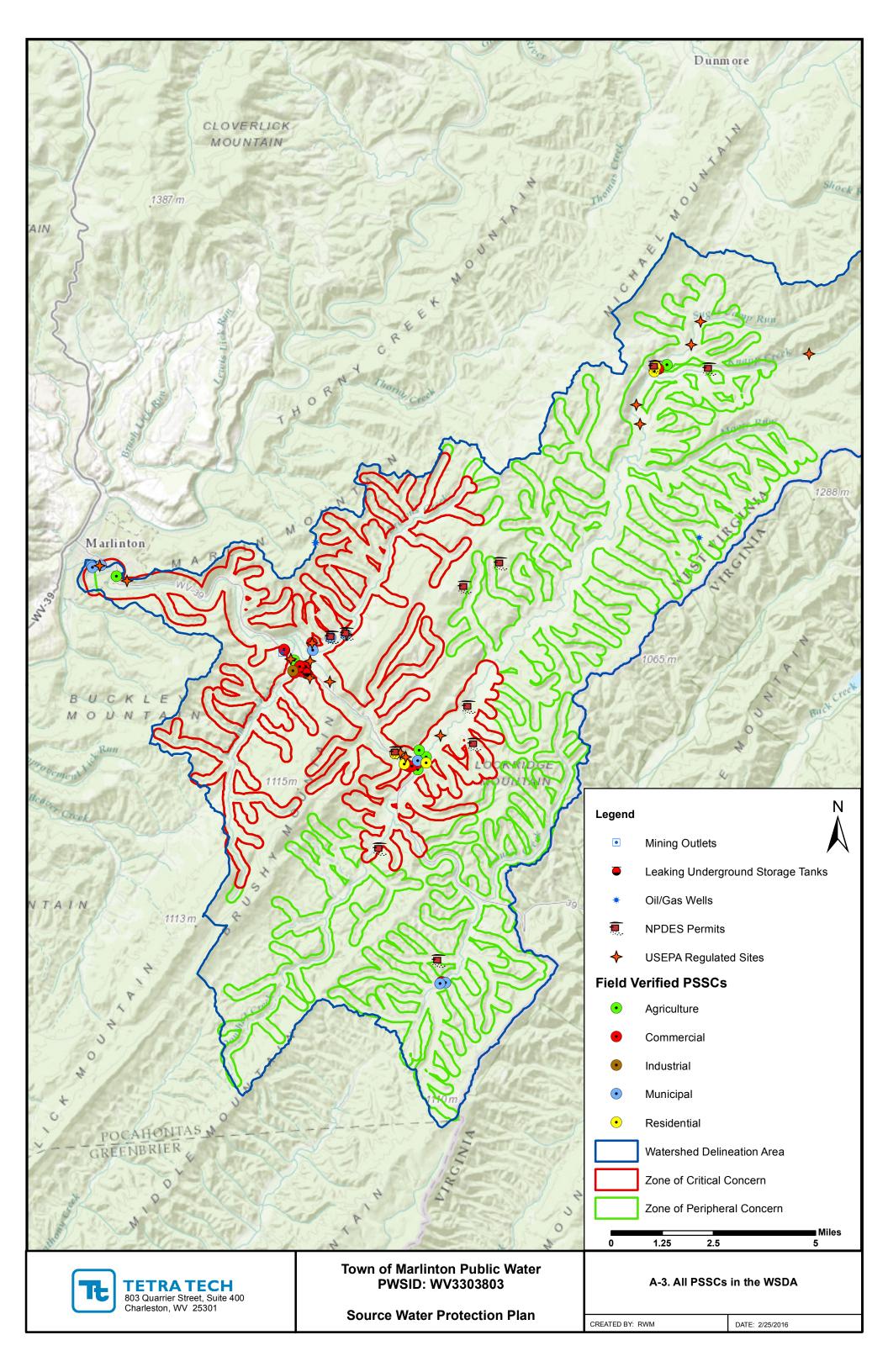
14.0 EMERGENCY RESPONSE SHORT FORM

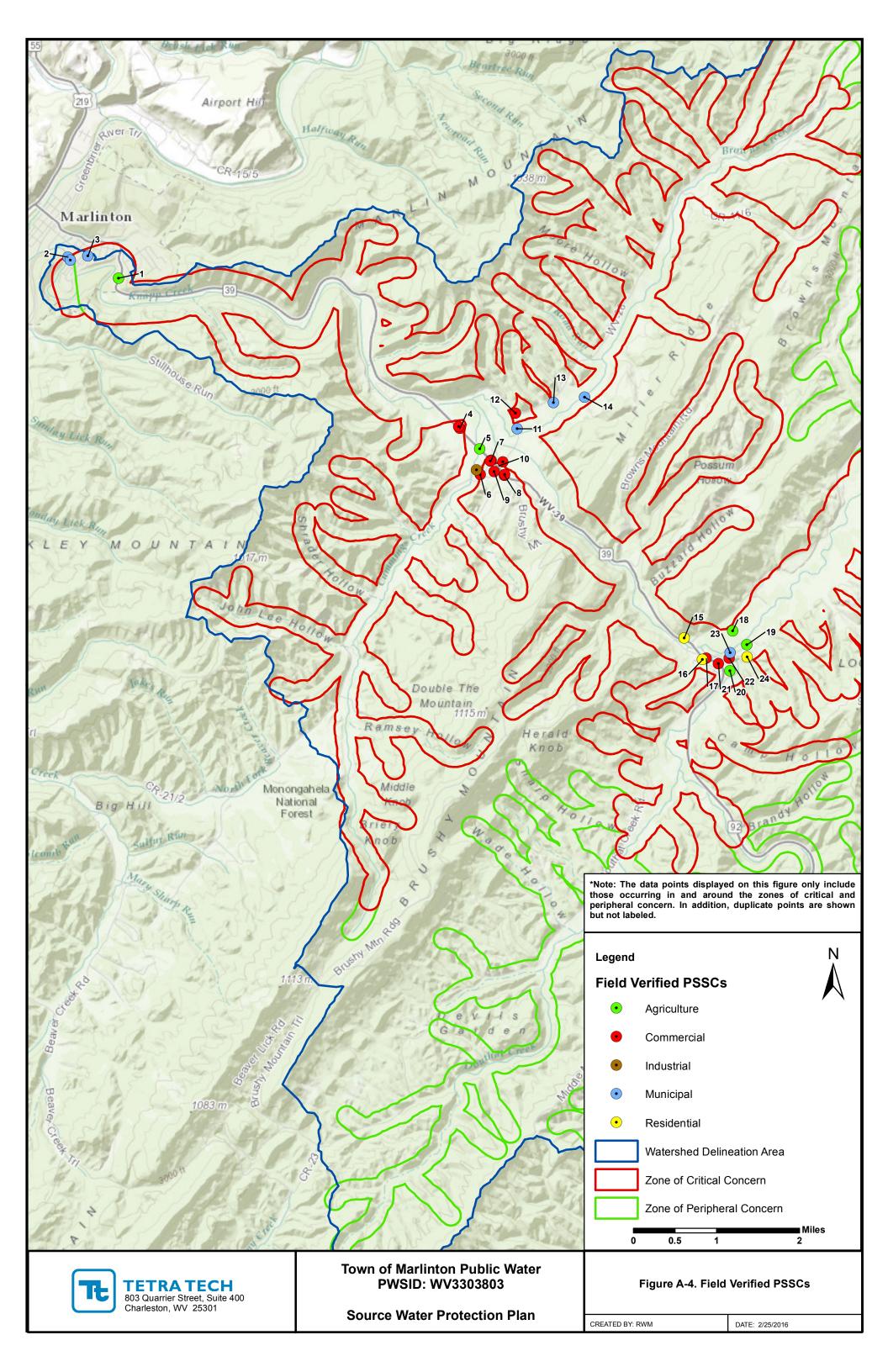
A public water utility must be prepared for any number of emergency scenarios and events that would require immediate response. It is imperative that information about key contacts, emergency services, and downstream water systems be posted and readily available in the event of an emergency. Elements of this source water protection plan, such as the contingency planning and communication plan, may contain similar information to the utility's emergency response plan. However, the emergency response plan is to be kept confidential and is not included in this source water protection plan. An Emergency Short Form is included in **Appendix C** to support the Communicate Plan by providing quick access to important information about emergency response and are to be used for internal review and planning purposes only.

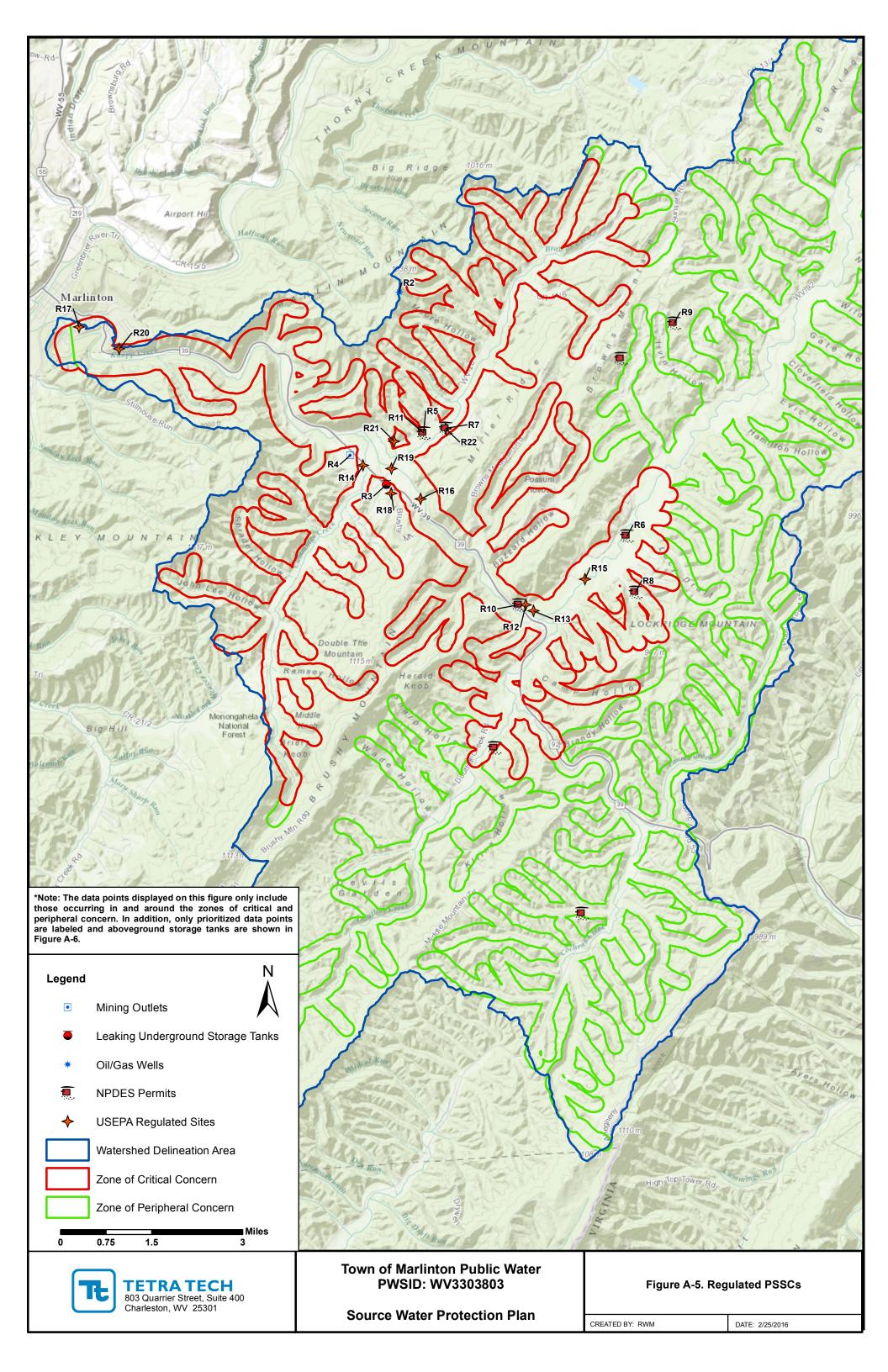
15.0 CONCLUSION

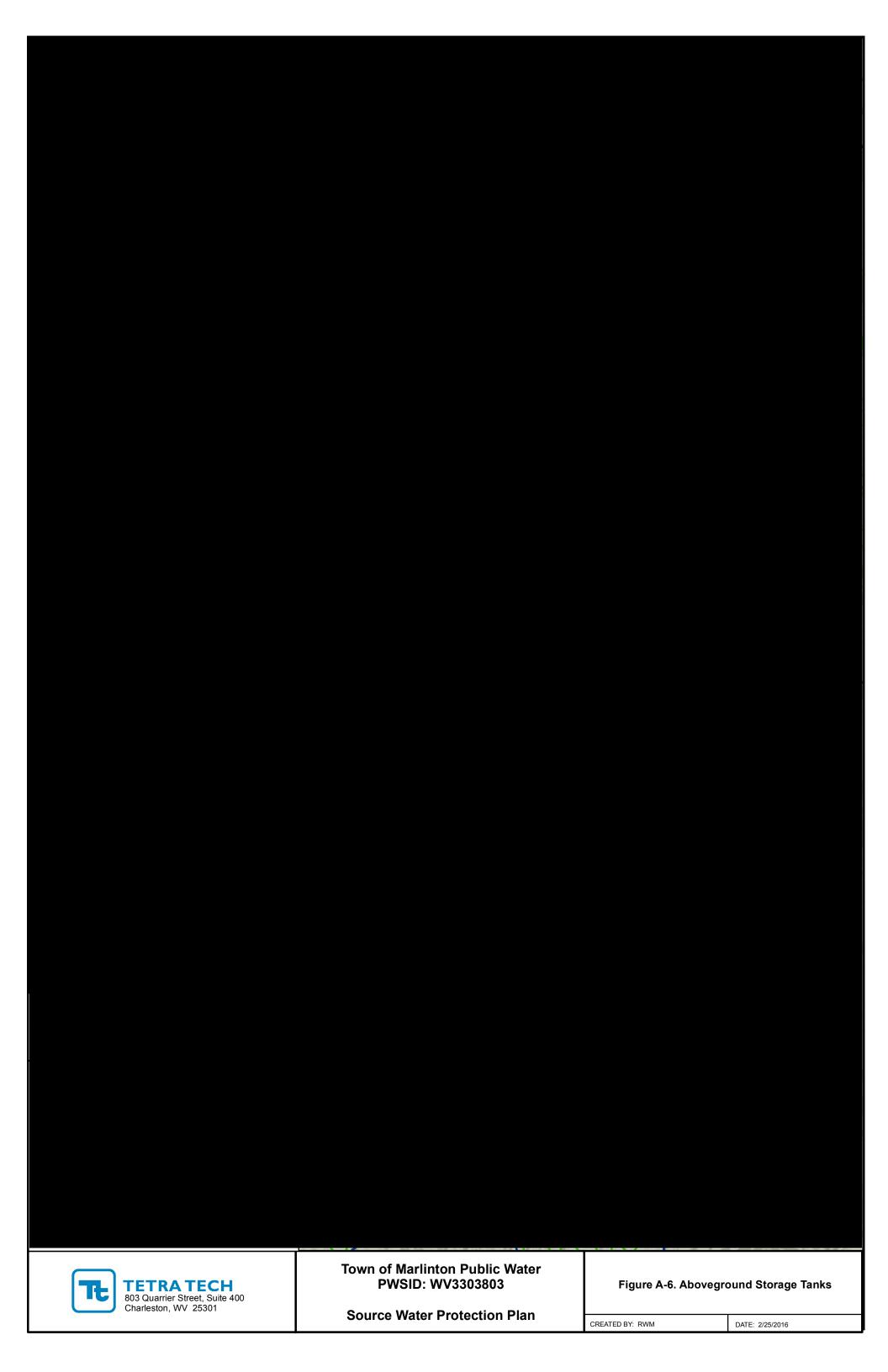

This report represents a detailed explanation of the required elements of Marlinton Public Water's Source Water Protection Plan. Any supporting documentation or other materials that the utility considers relevant to their plan can be found in **Appendix E**.


This source water protection plan is intended to help prepare community public water systems all over West Virginia to properly handle any emergencies that might compromise the quality of the system's source water supply. It is imperative that this plan is updated as often as necessary to reflect the changing circumstances within the water system. The protection team should continue to meet regularly and continue to engage the public whenever possible. Communities taking local responsibility for the quality of their source water is the most effective way to prevent contamination and protect a water system against contaminated drinking water. Community cooperation, sufficient preparation, and accurate monitoring are all critical components of this source water protection plan, and a multi-faceted approach is the only way to ensure that a system is as protected as possible against source water degradation.


30


TETRA TECH


APPENDIX A. FIGURES



Marlinton Public Water Source Water Protection Plan

Lists of Potential Sources of Significant Contamination

PSSC Summary – Marlinton Public Water

PSSC Layer	In ZCC	Around ZCC	In ZPC	Around ZPC	In Watershed	Total
Aboveground Storage Tanks	2	0	1	0	0	3
Leaking Underground Storage Tanks	0	1	0	0	0	1
Mining Outlets	0	1	0	0	0	1
NPDES Permits	7	2	3	0	0	12
USEPA Regulated Points	9	2	4	1	0	16
Oil/Gas Wells	0	3	1	0	0	4
Field Verified PSSCs	21	7	10		0	38
Total	39	16	19	1	0	75

Field Verified PSSCs (SWAP_PCS) - Figure A-4

PSSC Number	Map Code	Site Name	Site Description	Comments
1	A-12	Farm machinery areas	Wade Farm and Feed	
2	M-27	Waste transfer/recycling stations	Town of Marlinton Combined Sewer Overflow	Same as R-3
3	M-32	Other	Police fleet fueling	
4	C-18	Gas Stations	Chevron	confirmed
5	A-18	Pasture*	Horse Pasture	confimred
6	C-46	Sawmills and planers	Sawmill and Lumber Yard	
7	C-3	Auto repair shops	OD Fisher	
8	C-18	Gas Stations	McCalls Market	
9	C-25	Junk yards, scrap and auto	Junkyard	equipment and multiple AST in area
10	C-43	Repair Shops (engine, appliances, etc.)	Amos's Auto Repair	

A-1 April 2016

PSSC Number	Map Code	Site Name	Site Description	Comments
11	M-27	Waste transfer/recycling stations	Waste Transfer Station	green box, garbage collection area with 8 dumpsters
12	C-23	Historic gas stations	abandoned gas station	being remodeled no pumps
13	M-29	Wastewater Treatment Plant	Pocahontas Pampered Pets	Same as R-8
14	M-29	Wastewater Treatment Plant	Ambssadors for Christ Campground	Same as R-4
15	R-6	Septic Systems (leach field)*	UIC Sewage	leachfield or undergound HAU drain. Same as R-5
16	R-4	Residential (single family homes)	Residential (single family)	
17	C-6	Camp grounds	Camp Twin Creeks Childrens Campground	
18	A-18	Pasture*	Pasture	
19	A-17	Other animal facilities	Other Animal Facilities (horse grazing)	
20	A-18	Pasture*	Pasture	
21	C-9	Cemeteries	Cemeteries	
22	C-1	Above Ground Storage Tanks	AST	
23	M-35	Maintenance areas (general)	Maintenance areas (general)	
24	R-4	Residential (single family homes)	Residential (single family)	

^{*}Only 24 of 39 points were prioritized and labeled due to their severity or proximity to the intake. Other points lie within the watershed and are shown on the map, but were either duplicates or water-infrastructure related sites.

Aboveground Storage Tanks (AST_Chemicals) – Figure A-6

PSSC Number	Regulation Type	Tank Label	Responsible Party	In ZCC	Year Constructed	Capacity (gal)	Chemicals
R1	AST_Chemical	038-00000021	EXCO RESOURCES (PA), LLC	No	2009		

^{*}Only 1 of 3 points were prioritized and labeled due to its severity or proximity to the intake. Other points lie within the watershed and are shown on the map, but were not prioritized in this analysis. **NOTE: Aboveground storage tank information is considered confidential and should not be released to the public.**

Responsible Parties - Oil/Gas Wells

Responsible Party	Well Count
COLUMBIA NATURAL RESOURCES, LLC	3
EASTERN OVERTHRUST DRILLING, INC.	1

Marlinton Public Water Source Water Protection Plan

Oil/Gas Wells (ERIS_Wells) - Figure A-5

PSSC Number	Regulation Type	Permit ID	Responsible Party	Well Number	Farm Name	Status	In ZCC
R2	ERIS_wells	7500043	COLUMBIA NATURAL RESOURCES, LLC	22153	U.S. DEPT INTERIOR	PL	No

^{*}Only 1 of 4 points were prioritized and labeled due to its severity or proximity to the intake. Other points lie within the watershed and are shown on the map, but were not prioritized in this analysis.

Leaking Underground Storage Tanks (LUST) - Figure A-5

PSSC Number	Regulation Type	WVID	Facility Name	Cleanup Completed	In ZCC
R3	LUST	3804559	MCCALL'S MARKET	01/06/2010	No

Mining Outlets (HPU) - Figure A-5

PSSC Number	Regulation Type	Permit Number	Responsible Party	Туре	In ZCC	Permit Count
R4	HPU	WV0092339	BOXLEY AGGREGATES OF WEST VIRGINIA, LLC	Outlet	No	1

NPDES Permits (NPDES_Permits) - Figure A-5

PSSC Number	Regulation Type	Permit Number	Facility Name	Responsible Party	Permit Type	In ZCC	Status Flag
R5	NPDES_Permits	0910-05-075	Pocahontas Pampered Pets	DUNMIRE, JANE	UIC Industrial	Yes	0
R6	NPDES_Permits	WVR107336	Webb Stream Restoration	WEBB, DOSHIA J	Industrial	Yes	0
R7	NPDES_Permits	WVG550415	AMBASSADORS FOR CHRIST RETREAT	AMBASSADORS FOR CHRIST CMPGRD	Sewage	Yes	0
R8	NPDES_Permits	WVR107337	Bailey Stream Restoration	BAILEY, JACK	Industrial	Yes	0
R9	NPDES_Permits	WVR106898	Shayna Meadows Equestrian Center	OTTO, JAY	Industrial	No	0
R10	NPDES_Permits	1144-07-075	Minnehaha Market (Tricia Tegtmeyer)	TEGTMEYER, TRICIA D.	UIC Sewage	Yes	0
R11	NPDES_Permits	0910-05-075	Pocahontas Pampered Pets	DUNMIRE, JANE	UIC Industrial	Yes	0

^{*}Only 7 of 12 points were prioritized and labeled due to their severity or proximity to the intake. Other points lie within the watershed and are shown on the map, but were not prioritized in this analysis.

USEPA Regulated Sites (Superfund_RCRA) - Figure A-5

PSSC Number	Regulation Type	Registry	Primary Site Name	Registry ID	In ZCC
R12	Superfund_RCRA	110055036223	MINNEHAHA MARKET	110055000000	Yes
R13	Superfund_RCRA	110055013122	KNAPP CREEK 25	110055000000	Yes
R14	Superfund_RCRA	110054952663	CUMMINS CREEK BRIDGE \$338-3	110055000000	Yes
R15	Superfund_RCRA	110046125901	KNAPP CREEK SITE 24	110046000000	Yes
R16	Superfund_RCRA	110055010045	DEVIL'S BACKBONE RETREAT	110055000000	Yes
R17	Superfund_RCRA	110045520548	WV BROADBAND GRANT #2672 POCAH	110046000000	Yes
R18	Superfund_RCRA	110054961047	HUNTERSVILLE CAR WASH	110055000000	No
R19	Superfund_RCRA	110041687671	FORMER LACY BIRD STATION	110042000000	Yes
R20	Superfund_RCRA	110042432463	USDA FOREST SERVICE - MARLINTON	110042000000	Yes
R21	Superfund_RCRA	110040715928	LACY BIRD STATION - ID # 3-810191	110041000000	Yes
R22	Superfund_RCRA	110010849671	AMBASSADORS FOR CHRIST RETREAT	110011000000	Yes

^{*}Only 11 of 16 points were prioritized and labeled due to their severity or proximity to the intake. Other points lie within the watershed and are shown on the map, but were not prioritized in this analysis.

APPENDIX B. EARLY WARNING MONITORING SYSTEM FORMS

Form B- Proposed Early Warning Monitoring Systems

Town of Marlinton Public Water

Primary Surface Water Source:

There are many possible solutions for designing and installing an early warning monitoring system. Over time, this technology changes and improves and it is difficult to determine the type of equipment that will be useful and effective in the long term. This plan is a proposed system that would work for Town of Marlinton Public Water using current technology and the current plant and intake configuration.

The primary source of raw water for the Marlinton water treatment plant is Knapp Creek, which flows into the Greenbrier River just west of Marlinton. The treatment plant is located across a neighborhood from the intake, approximately 1,500' away. The raw water is gravity fed from the intake to the plant, and there are no pump houses or other structures near the intake to house the following monitoring systems, so a new structure would likely need to be constructed.

B-1. YSI EXO 2 Monitoring System Proposal

Describe the type of early warning detection equipment that could be installed, including the design.

The YSI EXO 2 Multiport Sonde can accommodate 6 different sensors and has an automatic wiper mechanism to remove biofouling from the sensor tips, which reduces maintenance time. The sonde is built to be resilient and low maintenance, and is capable of providing online water quality monitoring that can be transmitted real time to a designated PC or website that can be accessed by any designated user.

The sonde can hold up to 6 sensors, but this plan recommends 4 of the more basic sensors that would be sufficient to detect any sudden shifts in water quality in any West Virginia stream or river. These sensors would include: conductivity/temperature, optical dissolved oxygen, pH, and fluorescent dissolved organic matter (fDOM). The fDOM sensor could potentially detect petroleum products in the water but is not entirely reliable for this purpose. At this time, YSI does not make a sensor for petroleum products for the EXO 2 but likely will in the future, at which time it is recommended that the utility purchase it. Other sensors could be purchased in the future as well if deemed necessary by the utility.

Where would the equipment be located?

The sonde would be attached to the intake pipe itself, which extends into Knapp Creek. This would provide a stable foundation for the equipment and also ensure that the device is able to sample the water that is actually entering the intake pipe and not missing potential contaminants because it is located on the wrong side of the stream or too far from the intake. The suggested method of mounting the sonde involves drilling holes in a PVC pipe, capping the end, inserting the sonde and attaching to the intake pipe structure using brackets or chains. This will protect the sensor from debris and hide it from view somewhat.

The sonde would be hardwired to the YSI Storm 3 data analysis/telemetry system. Since the Marlinton water treatment plant is not next to the intake, a new structure would need to be constructed to house the Storm 3. The unit is contained in a waterproof case and comes with a solar photovoltaic panel capable of powering both the data analysis unit and the sonde, so long as the sonde is hardwired to the Storm 3. The device can be battery powered as well if this is not an option.

B-1 April 2016

What would the maintenance plan for the monitoring equipment entail?

The maintenance plan for the system would involve replacing the dissolved oxygen sensor cap, replacing the pH electrode cap, and purchasing pH, turbidity, and conductivity calibration solution on a yearly basis. The sonde itself is designed to last from 5-10 years and should be inspected and calibrated once a month.

In addition, there is a recurring yearly fee associated with the real-time data/telemetry package for managing the website and data analysis.

Describe the proposed sampling plan at the monitoring site.

The sonde can be programmed to take regular measurements at any intervals defined by the operator or user. These measurements can also be taken in bursts, averaged over a period of time, or modified automatically as water quality levels change. Data is stored in the Storm 3 and transmitted to the plant computer as it is recorded. This information can be transmitted wirelessly via a cellular modem. The cellular transmitter is powerful enough to work even in areas with poor cell reception.

Describe the proposed procedures for data management and analysis.

The Storm 3 package includes data management software that can generate data reports and presentations and allow the user to modify and adjust sampling schedules remotely from the plant.

The sonde can be programmed to alert the user when any of the water quality parameters exceeds a userdefined level. This will allow the operator to program the system to notify them when their previously observed baseline conditions are exceeded in time for them to shut down the pumps and close off the intake. The operator can receive alerts via text message and email at the treatment plant computer or any designated cell phone.

B-2. Hach sc1000 Monitoring System Proposal

Describe the type of early warning detection equipment that could be installed, including the design.

The Hach sc1000 online monitoring system includes a controller, back panel, display module, and trough. Raw water is pumped into the trough from the source where it can be sampled in real time. The probe module can accommodate up to 6 sensors, which means it can monitor up to 6 parameters at once. This plan suggests the following sensors: conductivity, pH, turbidity, and dissolved oxygen. Hach can also supply a sensor to detect oil in water, which would cost an additional \$18,414.00 and would possibly be a good investment for any water system if sufficient funds were available. This sensor is not included in the quoted capital cost. There are several other probes for other parameters that are available from Hach, and these could be purchased as deemed necessary by the utility.

Where would the equipment be located?

The sc1000 Controller, back panel, and trough would be housed in a new structure that would be built on the bank near the intake. A small diameter line would run out from the plant the length of the intake pipe to pull raw water back to the controller where it would flow into the trough for sampling. The closer this sampling line can be to the actual intake, the more accurately it will reflect the raw water that is actually entering the plant. This option would require the utility to purchase a line or hose long enough to reach the intake pipe and a small pump. The line and pump could be fairly low-tech and inexpensive, as the sc1000 only requires a minimum of 900 mL/min. of flow.

The controller will be equipped with the MODBUS advanced communications/networking unit, which can transmit readings in real time directly to the SCADA system in the treatment plant to alert the operators in any change in baseline water quality. The sc1000 can either be hardwired to the computer at the treatment plant or it can use a cellular modem to transmit the data if there is sufficient cellular signal.

April 2016 B-2 TETRA TECH

What would the maintenance plan for the monitoring equipment entail?

The maintenance plan for the system would entail a yearly maintenance contract with the manufacturer. A Hach Service Representative would regularly service the monitoring equipment. This service would take care of all parts, labor, and preventative maintenance and would include 2-3 scheduled maintenance visits per year.

Describe the proposed sampling plan at the monitoring site.

The sc1000 monitors the quality of water flowing through the trough in real time, and can transmit this data back to the plant as it is collected. The actual timing of the sampling plan could be determined by the utility.

Describe the proposed procedures for data management and analysis.

It is recommended that the utility purchase the Hach Universal Data Gateway software, which would help to process and analyze the incoming information into easily interpreted reports. The price of this software is included in the rough capital cost.

B-3. Real Tech Full Scanning UV-VIS Monitoring System

Describe the type of early warning detection equipment that could be installed, including the design.

The Real Tech Full Scanning UV-VIS monitoring system provides full ultraviolet/visible scanning for organics and other specific parameters that may indicate a contamination event. The included PC Controller is preloaded with the software needed to store and process this information to establish a "normal" or "baseline" set of conditions for the raw water source. In addition to the UV-VIS sensors, the system can accommodate up to 8 additional sensors that are available from a third party and priced separately.

This plan includes pricing and details for a system equipped to measure conductivity, pH, temperature, and dissolved oxygen. Other additional sensors could be purchased and added if deemed necessary by the utility.

Where would the equipment be located?

In the case of Marlinton, the UV-VIS Full Monitoring System would be housed in a new monitoring building that would located as close to the raw water intake as possible. A small-diameter line or hose would run from the treatment plant to the intake pipe to pull raw water back to the controller where it would flow into the unit for sampling. The closer the end of the sampling line can be to the actual intake, the more accurately it will reflect the raw water that is actually entering the plant. This option would require the utility to purchase enough line to reach the intake as well as a small pump. The line and pump could be fairly small and inexpensive, as the system only requires a minimum of 300-800 mL/min. of flow. The system also includes the Real Pump Clean System, which provides flow and automatic chemical cleaning of the sensors and reduces maintenance time.

This system would require a reliable electrical source, but the intake is not far from the existing electrical grid and it shouldn't be a problem to get power to the new monitoring shed.

What would the maintenance plan for the monitoring equipment entail?

The maintenance plan for the system would require about 2 hrs/month for scheduled maintenance tasks. It is also recommended that a monthly laboratory reference sample is taken to effectively calibrate the sensors.

The Smart-Sense Web Monitoring Service package costs an additional \$499/yr., but provides additional support and remote accessibility by Real Tech, and it is recommended. The Deuterium and Tungsten lamps would also need to be replaced every six months at a cost of \$740.

Describe the proposed sampling plan at the monitoring site.

The Full Scanning UV-VIS system continuously monitors raw water as it is pumped through the unit, and is capable of establishing baseline conditions that account for seasonal variability, which can help to reduce false alarms.

Describe the proposed procedures for data management and analysis.

The Real Tech monitoring system is capable of communicating with the treatment plant via Modbus, Ethernet, USB, or cell modem. It can be integrated with the treatment plant's SCADA system to provide real-time information about conditions at the intake and provides full remote monitoring.

It is also recommended that the utility take advantage of the Smart-Sense Web Monitoring service offered by Real-Tech to analyze and interpret data taken by the monitoring system. This consultation service requires an additional service fee, which is included in this quote.

TE TETRA TECH

APPENDIX C. COMMUNICATION PLAN TEMPLATE

Marlinton Public Water

Certified Operator: Dave Johnson

Contact Phone Number: 304-799-4315

Contact Email Address: townofmarlinton@frontiernet.net

Plan Developed On: July 1, 2016

ACKNOWLEDGMENTS:

This plan was developed by Marlinton Public Water to meet certain requirements of the Source Water and Assessment Protection Program (SWAPP) and the Wellhead Protection Program (WHPP) for the State of West Virginia, as directed by the federal Safe Drinking Water Act (SDWA) and state laws and regulations.

TABLE OF CONTENTS

INTRODUCTION	C-1
TIERS REPORTING SYSTEM	C-1
COMMUNICATION TEAM	
COMMUNICATION TEAM DUTIES	
INCIDENT / EVENT COMMUNICATION PROCEDURE	
TIERS FLOW CHART	
EMERGENCY SHORT FORMS	C-6
EMERGENCY CONTACT INFORMATION	
PRESS RELEASE ATTACHMENTS	

INTRODUCTION

Legislative Rule 64CSR3 requires public water systems to develop a Communication Plan that documents how public water suppliers, working in concert with state and local emergency response agencies, shall notify state and local health agencies and the public in the event of a spill or contamination event that poses a potential threat to public health and safety. The plan must indicate how the public water supplier will provide updated information, with an initial notification to the public to occur no later than thirty minutes after the supplier becomes aware that the spill, release or potential contamination of the public water system poses a potential threat to public health and safety.

The public water system has responsibility to communicate to the public, as well as to state and local health agencies. This plan is intended to comply with the requirements of Legislative Rule 64CSR3, and other state and federal regulations.

TIERS REPORTING SYSTEM

This water system has elected to use the *Tiered Incident / Event Reporting System* (TIERS) for communicating with the public, agencies, the media, and other entities in the event of a spill or other incident that may threaten water quality. TIERS provides a multi-level notification framework, which escalates the communicated threat level commensurate with the drinking water system risks associated with a particular contamination incident or event. TIERS also includes a procedural flow chart illustrating key incident response communication functions and how they interface with overall event response / incident management actions. Finally, TIERS identifies the roles and responsibilities for key people involved in risk response, public notification, news media and other communication.

TIERS provides an easy-to-remember five-tiered **A-B-C-D-E** risk-based incident response communication format, as described below. Table 1 provides also associated risk levels.

- **A** = **A**nnouncement. The water system is issuing an announcement to the public and public agencies about an incident or event that may pose a threat to water quality. Additional information will be provided as it becomes available. As always, if water system customers notice anything unusual about their water, they should contact the water system
- **B** = **B**oil Water Advisory. A boil water advisory has been issued by the water system. Customers may use the water for showering, bathing, and other non-potable uses, but should boil water used for drinking or cooking.
- **C** = **C**annot Drink. The water system asks that users not drink or cook with the water at this time. Non-potable uses, such as showering, bathing, cleaning, and outdoor uses are not affected.
- **D** = **D**o Not Use. An incident or event has occurred affecting nearly all uses of the water. Do not use the water for drinking, cooking, showering, bathing, cleaning, or other tasks where water can come in contact with your skin. Water can be used for flushing commodes and fire protection.
- **E** = **E**mergency. Water cannot be used for any reason.

Tier	Tier Category	Risk Level	Tier Summary
A	Announcement	Low	The water system is issuing an announcement to the public and public agencies about an incident or event that could pose a threat to public health and safety. Additional information will be provided as it becomes available.
В	B oil Water Advisory	Moderate	Water system users are advised to boil any water to be used for drinking or cooking, due to possible microbial contamination. The system operator will notify users when the boil water advisory is lifted.

(С	C annot Drink	High	System users should not drink or cook with the water until further notice. The water can still be used for showering, bathing, cleaning, and other tasks.
I	D	D o Not Use	Very High	The water should only be used for flushing commodes and fire protection until further notice. More information on this notice will be provided as soon as it is available.
ı	E	Emergency	Extremely High	The water should not be used for any purpose until further notice. More information on this notice will be provided as soon as it is available.

COMMUNICATION TEAM

The Communication Team for the water system is listed in the table below, along with key roles. In the event of a spill or other incident that may affect water quality, the water system spokesperson will provide initial information, until the team assembles (if necessary) to provide follow-up communication.

Water system communication team members, organizations, and roles.

Team Member Name	Organization	Phone	Email	Role
Sam Felton	Mayor- Town of Marlinton	304-799-4315	townofmarlinton@frontiernet.net	Primary Spokesperson
Dave Johnson	Chief Operator- Marlinton Public Water	304-799-7442	townofmarlinton@frontiernet.net	Secondary Spokesperson
Cindy Wilfong	Sanitarian- Pocahontas County Health Department	304-799-4154	Cindy.A.Wilfong@wv.gov	Member
Travis Cook	Pocahontas County Emergency Management	304-799-4624	tcook@pocahontasemergency.com	Member
J.P. Duncan	Marlinton Fire Department	304-376-4211	marlintonfire@gmail.com	Member

In the event of a spill, release, or other incident that may threaten water quality, members of the team who are available will coordinate with the management staff of the local water supplier to:

- Collect information needed to investigate, analyze, and characterize the incident/event
- Provide information to the management staff, so they can decide how to respond
- Assist the management staff in handling event response and communication duties
- Coordinate fully and seamlessly with the management staff to ensure response effectiveness

TETRA TECH

COMMUNICATION TEAM DUTIES

The communication team will be responsible for working cooperatively with the management staff and state and local emergency response agencies to notify local health agencies and the public of the initial spill or contamination event. The team will also provide updated information related to any contamination or impairment of the source water supply or the system's drinking water supply.

According to Legislative Rule 64CSR3, the initial notification to the public will occur no later than thirty minutes after the public water system becomes aware that the spill, release or potential contamination of the public water system poses a potential threat to public health and safety.

As part of the group implementing the Source Water Protection Plan, team members are expected to be familiar with the plan, including incident/event response and communication tasks. Specifically, team members should:

- Be knowledgeable on elements of the Source Water Protection Plan and Communication Plan
- Attend team meetings to ensure up-to-date knowledge of the system and its functions
- · Participate in periodic exercises that "game out" incident response and communication tasks
- Help to educate local officials, the media, and others on source water protection
- Cooperate with water supplier efforts to coordinate incident response communication
- Be prepared to respond to requests for field investigations of reported incidents
- Not speak on behalf of the water supplier unless designated as the system's spokesperson

The primary spokesperson will be responsible for speaking on behalf of the water system to local agencies, the public, and the news media. The spokesperson should work with the management staff and the team to ensure that all communication is clear, accurate, timely, and consistent. The spokesperson may authorize and/or direct others to issue news releases or other information that has been approved by the system's management staff. The spokesperson is expected to be on call immediately when an incident or event which may threaten water quality occurs. The spokesperson will perform the following tasks in the event of a spill, release, or other event that threatens water quality:

- Announce which risk level (A, B, C, D, or E) will apply to the public notifications that are issued
- Issue news releases, updates, and other information regarding the incident/event
- Use the news media, email, social media, and other appropriate information venues
- Ensure that news releases are sent to local health agencies and the public
- Respond to questions from the news media and others regarding the incident/event
- Appear at news conferences and interviews to explain incident response, etc.

INCIDENT / EVENT COMMUNICATION PROCEDURE

The flow chart in this section illustrates how the water system will respond when it receives a report that a spill, release, or other contamination event may have occurred. Key elements of the flow chart are described below.

Communication with agencies, the public, and the media during threat incidents

Upon initial notification of the incident/event, system managers and staff will collect information and verify the need for further investigation. Only properly trained personnel will perform onsite investigations if permitted by emergency responders. If further investigation is warranted, and the initial facts support it, the water system spokesperson will issue a public communication statement consistent with the threat level. In addition, water system personnel and partners will be dispatched to conduct reconnaissance, a threat assessment, and a threat characterization, if present. This work may include:

- Verification of the incident/event type (spill, release, etc.)
- Location of incident/event
- Type of material(s) involved in spill, release, etc.
- Quantity of material involved
- Potential of the material to move, migrate, or be transported
- Relevant time factor(s) in the risk assessment (e.g., downstream movement rate)
- Overall level of risk to water system, whether low, moderate, high, or very high
- Development of the initial risk characterization

As the flow chart indicates, several iterative cycles will occur after the initial threat assessment, including communication with local agencies and the public, further investigation of the incident, possible implementation of the water system's contingency plan, and eventual elimination of the threat and a return to normal operations. Communication activities during this period will include:

- The initial release (i.e., Announcement, Boil Water Advisory, Cannot Drink, Do Not Use, or Emergency)
 - o Sent to local health agencies, the public, and the news media within 30 minutes
- Notification of the local water system's source water protection and communication teams
 - If warranted by initial findings regarding the spill, release, or incident
- Notification of the WV Bureau of Public Health
 - As required
- Periodic information updates, as incident response information is received
- Updates to the applicable A-B-C-D-E advisory tier, as necessary

After the threat level is reduced and operations return to normal, the water system staff, as well as the communication and source water protection teams and their partners, will conduct a post-event review and assessment. The purpose of the review is to examine the response to the incident, relevant communication activities, and overall outcomes. Plans and procedures may be updated, altered, or adapted based on lessons learned through this process.

TIERS FLOW CHART

Public Water Supplier Becomes Aware of Incident or Event

Conduct initial assessment to determine if the incident/event poses a risk to public health and safety

Incident Poses Potential a Risk and **Requires Notification within 30 Minutes**

 Public water supplier must issue notification to the public and local health agencies within 30 minutes of determining that incident poses a risk to public health and safety

Incident Does Not Pose a Risk No Further Investigation Is Needed

- Does not require notification to the public and local health agencies in 30 minutes.
- Should notify that known incident does not pose a risk.

Activate Incident Response

· Deploy incident assessment personnel

Implement Contingency Plan if **Necessary**

• Replace/augment water source

Threat is Reduced or Eliminated- Communicate*

- Adapt as necessary
- Communicate*

Threat Assessment and Characterization

- Incident/event type (spill, release, etc.)
- Location of incident/event
- Material(s) involved in spill, release, etc.
- · Quantity of material
- Material movement/migration potential
- Time factor(s) in risk assessment
- · Level of risk to water system o Low, moderate, high, very high
- · Initial risk characterization
- Communicate*

Review Incident, Adapt Approach

- Incident response/investigation
- Communication activities
- Contingency operations

Return to Normal Operations

Monitor any new developments

- Continue managing operations & source water protection program
- Communicate*

Threat Level Remains or Escalates-Communicate*

Communicate*

Constant communication with local agencies, public, and the media is critical throughout the entire process. The initial notification should include all pertinent information, depending on the TIERS level. Regular information updates should be provided. The A-B-C-D-E TIERS levels should be updated and explained as necessary.

C-5 April 2016

EMERGENCY SHORT FORMS

Emergency Communication Information

	Name	Phone Number	Email
Designated spokesperson:	Sam Felton	304-799-4315	townofmarlinton@frontiernet.net
Alternate spokesperson:	Dave Johnson	304-799-7442	townofmarlinton@frontiernet.net
Designated location to disseminate		Marlin	nton City Hall

Methods of contacting affected

residents:

information to media:

Marlinton Public Water uses several methods of contacting affected customers

about important information, including via local radio and newspaper. Their primary method of communication is an automatic notification system called Nixle 360, which can deliver timely and targeted emergency notifications via text and phone directly to affected customers. Pocahontas County Emergency Management also contacts affected residents using their web page and social media.

	Name	Title	Phone Number	Email
	Pocahontas Times	Newspaper	304-799-4973	jsgraham@pocahontastimes.com
Media contacts:	WDTV	CBS Affiliate- Bridgeport, WV	304-848-5000	news@wdtv.com
	WBOY-TV	Clarksburg, WV	304-623-3311	bhardman@wboy.com
	WVMR Radio	Allegheny Mountain Radio- Richard Heiss	304-799-6004	alleghenymountainradio.org

Emergency Services Contacts

	Name	Emergency Phone	Alternate Phone	Email
Local Police	Pocahontas County Sheriff's Department	911	304-799-4445	-
Local Fire Department	Marlinton Volunteer Fire Department	911	304-799-4211	-

April 2016 C-6

Local Ambulance Service	Marlinton Rescue Squad	911	304-799-6973	-
Hazardous Material Response Service	Marlinton Volunteer Fire Department- Developing a Hazardous Materials Team	911	304-799-4211	-

Sensitive Populations

Other commu		None						
Major user/sensitive		Name		Emerg	Emergency Phone		Alternate Phone	
		Pocahontas Center Nursing Home		304-799-7375		-		
population no			Elementary hool	304-799-6551			-	
		Marlinton Middle School		304-799-6773				
			ame	Phone		Email		
EED District Office Contact:		Craig Cobb		304-457-2296 EED Central Office: 304-558-2981		craig.r.cobb@wv.gov		
OEHS Rea Coordin		Warren Von Dollen			6-4290 (main) 60-5607 (cell)	warren.	.r.vondollen@wv.gov	
	Water Syst	em Name	Contact	Name	Emergency F	Phone	Alternate Phone	
	City Of Le	wisburg	Randy Jo	ohnson 304-647-55		585	-	
Downstream Water	Aldersor	Water	Donald S	Steep 304-445-		331	-	
Contacts:	Big Ben	d PSD	John D. Kesler		304-466-5111		-	
	Denmar Correctional Center		Mark A. Williamson		304-653-4201		-	
Are you planning on implementing the TIER system?					Yes			

Key Personnel

	Name	Title	Phone	Email
Key staff responsible for coordinating	Sam Felton	Mayor	304-799-4315	townofmarlinton@frontiernet.net
emergency response procedures?	Dave Johnson	Chief Operator	304-799-7442	townofmarlinton@frontiernet.net
Staff responsible for keeping confidential	Sam Felton	Mayor	304-799-4315	townofmarlinton@frontiernet.net
PSSC information and releasing to emergency responders:	Dave Johnson	Chief Operator	304-799-7442	townofmarlinton@frontiernet.net

Emergency Response Information

	Na	ıme		Phone	
	REIC Laboratory- Beaver, WV			00-999-0105, 304-255-2500, info@reiclabs.com	
List laboratories available to perform sample analysis in case of emergency:	WV State Laboratory, Environmental Chemistry Section- Charleston, WV			304-965-2694	
	Analabs- Cral	Analabs- Crab Orchard, WV		1-800-880-6406, analabs@analabsinc.com	
Has the utility develope Emergency Response Plan with the Public Health Secu Preparedness and Respor 2002?			No		
When was the Emergency R	esponse Plan deve	eloped or last updat	ted?	N/A	

EMERGENCY CONTACT INFORMATION

State Emergency Spill Notification 1-800-642-3074

Office of Emergency Services

http://www.wvdhsem.gov/ Charleston, WV- (304) 558-5380

WV Bureau for Public Health Office of Environmental Health Services (OEHS)

www.wvdhhr.org/oehs

Readiness Coordinator- Warren Von Dollen

Phone; 304-356-4290 Cell; 304-550-5607

E-mail: warren.r.vondollen@wv.gov

Environmental Engineering Division Staff

Charleston, Central Office (304) 558-2981 Beckley, District 1 (304) 256-6666 St. Albans, District 2 (304) 722-0611 Kearneysville, District 4 (304) 725-9453 Wheeling, District 5 (304) 238-1145 Fairmont, District 6 (304) 368-2530

National Response Center - Chemical, Oil, & Chemical/Biological Terrorism

1-800-424-8802

WV State Fire Marshal's Office

1-800-233-3473

West Virginia State Police

1-304-746-2100

WV Watch - Report Suspicious Activity

1-866-989-2824

DEP Distance Calculator

http://tagis.dep.wv.gov/pswicheck/

PRESS RELEASE ATTACHMENTS

TIERS Levels A, B, C, D, and E

PUBLIC WATER SYSTEM ANNOUNCEMENT A WATER SYSTEM INVESTIGATION IS UNDERWAY

On at <u>:</u> AM/PM, the	Water System began
investigating an incident that may affect local wa	ater quality.
The incident involves the following situation at the	nis location:
There are no restrictions on water use at this time	ne. As always, if water system customers notice
anything unusual about their water - such as ab	normal odors, colors, sheen, etc. – they should
contact the water system at	
At this time there is no need for concern if you h	ave consumed or used the water.
Regular updates will be provided about this Ann	ouncement as water system staff continue their
investigation. Again, there are no restrictions on	water use at this time.
State Water System ID#	Date Distributed:

UTILITY ISSUED NOTICE - LEVEL B BOIL WATER ADVISORY A BOIL WATER ADVISORY IS IN EFFECT

On at: am/pm, a water problem occurred causing contamination of your wat The areas that are affected are as follows:	∍r.
□ Entire Water System or □ Other:	
CONDITIONS INDICATE THERE IS A HIGH PROBABILITY THAT YOUR WATER IS CONTAMINATED. TESTING HAS NOT OCCURRED TO CONFIRM OR DENY THE PRESENCE CONTAMINATION IN YOUR WATER.	OF
What should I do?	
 DO NOT DRINK THE WATER WITHOUT BOILING IT FIRST. Bring all water to a boil, let boil for one minute, and let it cool before using, or use bottled water. Boiled or bottled wate should be used for drinking, making ice, brushing teeth, washing dishes, bathing, and food preparation until further notice. Boiling kills bacteria and other organisms in the water. 	er
What happened?	
The problem is related to	
What is being done?	
The water system is taking the following action:	
What should a customer do if they have consumed or used the water?	
We will inform you when you no longer need to boil your water. We anticipate resolving the prob within hours/days. For more information, please contact at or at	em
General guidelines on ways to lessen the health risk are available from the EPA Safe Drinking We Hotline at 1 (800) 426-4791.	ater
Please share this information others who use this water, especially those who may not have rece this notice directly (for example, people in apartments, nursing homes, schools, and businesses). can do this by posting this notice in a public place or distributing copies by hand or mail.	
This notice was distributed by	
State Water System ID# Date Distributed:	

UTILITY ISSUED NOTICE – LEVEL C "CANNOT DRINK" WATER NOTIFICATION A LEVEL C WATER ADVISORY IS IN EFFECT

On at : am/pm, a water problem occurred causing contamination of your water. The areas that are affected are as follows:
□ Entire Water System or □ Other:
CONDITIONS INDICATE THERE IS A HIGH PROBABILITY THAT YOUR WATER IS CONTAMINATED. TESTING HAS NOT OCCURRED TO CONFIRM OR DENY THE PRESENCE OF CONTAMINATION IN YOUR WATER.
What should I do?
 DO NOT DRINK THE WATER. You can't drink the water, but you can use it for showering, bathing, toilet-flushing, and other non-potable purposes.
 BOILING WILL NOT PURIFY THE WATER. Do not drink the water, even if it is boiled. The type of contamination suspected is not removed by boiling.
What happened?
The problem is related to
What is being done?
The water system is taking the following action:
What should a customer do if they have consumed or used the water?
We will inform you when the water is safe to drink. We anticipate resolving the problem within hours/days. For more information – or to report unusual water conditions such as abnormal odors, colors, sheen, etc. – please contact at or at
Please share this information others who use this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.
This notice was distributed by
State Water System ID# Date Distributed:

TETRA TECH

UTILITY ISSUED NOTICE – LEVEL D "DO NOT USE" WATER NOTIFICATION A LEVEL D WATER ADVISORY IS IN EFFECT

On at: am/pm, a water problem occurred causing contamination of your water. The areas that are affected are as follows:
□ Entire Water System or □ Other:
CONDITIONS INDICATE THERE IS A HIGH PROBABILITY THAT YOUR WATER IS CONTAMINATED. TESTING HAS NOT OCCURRED TO CONFIRM OR DENY THE PRESENCE OF CONTAMINATION IN YOUR WATER.
What should I do?
DO NOT DRINK THE WATER. The water is contaminated.
 DO NOT SHOWER OR BATHE IN THE WATER. You can't use the water for drinking, showering, or bathing. It can be used for toilet flushing and firefighting.
BOILING WILL NOT PURIFY THE WATER. Do not use the water, even if it is boiled. The type of contamination suspected is not removed by boiling.
What happened?
The problem is related to
What is being done?
The water system is taking the following action:
What should a customer do if they have consumed or used the water?
•
We will inform you when the water is safe to drink. We anticipate resolving the problem within hours/days. For more information – or to report unusual water conditions such as
abnormal odors, colors, sheen, etc. – please contact at or at
Please share this information others who use this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.
This notice was distributed by
State Water System ID# Date Distributed:

UTILITY ISSUED NOTICE – LEVEL E EMERGENCY WATER NOTIFICATION A LEVEL E WATER ADVISORY IS IN EFFECT

On at: am/pm, a water problem occurred causing contamination of your water. The areas that are affected are as follows:
□ Entire Water System or □ Other:
CONDITIONS INDICATE THERE IS A HIGH PROBABILITY THAT YOUR WATER IS CONTAMINATED. TESTING HAS NOT OCCURRED TO CONFIRM OR DENY THE PRESENCE OF CONTAMINATION IN YOUR WATER.
What should I do?
DO NOT DRINK THE WATER. The water is contaminated.
 DO NOT USE THE WATER FOR ANY PURPOSE! You can't use the water for drinking, showering, or bathing, or any other use – not even for toilet flushing.
 BOILING WILL NOT PURIFY THE WATER. Do not use the water, even if it is boiled. The type of contamination suspected is not removed by boiling.
What happened?
The problem is related to
What is being done?
The water system is taking the following action:
What should a customer do if they have consumed or used the water?
•
We will inform you when the water is safe to drink. We anticipate resolving the problem within hours/days. For more information – or to report unusual water conditions such as abnormal odors, colors, sheen, etc. – please contact at or at
Please share this information others who use this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.
This notice was distributed by
State Water System ID# Date Distributed:

APPENDIX D. SINGLE SOURCE FEASIBILITY STUDY

Source Water Protection Plan

Contingency Plan and Feasibility Study

TOWN OF MARLINTON PUBLIC WATER

PWSID WV3303803 POCAHONTAS COUNTY

SEPTEMBER 2015

Prepared by:

Tetra Tech, Inc. 803 Quarrier Street, Suite 400 Charleston, WV 25314

In cooperation with Town of Marlinton

Victor D'Amato, PE

Date

Contents

Background	1
Contingency Plan	1
Responding to Water Shortage or Contamination Event	1
Operation During Loss of Power	3
Future Water Supply Needs	4
Water Loss	5
Early Warning Monitoring System	6
Single Source Feasibility Study	8
Tables	
Table 1. Town of Marlinton Water Shortage Response Capability	2
Table 2. Generator Capacity	3
Table 3. Future Water Supply Needs for Town of Marlinton Public Water	4
Table 4. Water Loss Information	5
Table 5. Early Warning Monitoring System Capabilities	7

Appendices

Appendix A. Early Warning Monitoring System

Appendix B. Single Source Feasibility Study Matrices and Narrative

Background

To fulfill the requirements of Senate Bill 373 and Legislative Rule 64 CSR 3, Town of Marlinton Public Water has participated in a study to evaluate its existing contingency planning and feasibility of source water alternatives. This Contingency Planning and Feasibility Study report documents the results of the study and provides information about the utility's ability to prevent contaminants from entering the water system if possible, and sufficiently respond to an emergency if necessary. This report represents only a portion of the required elements of the Source Water Protection Plan for Town of Marlinton Public Water. The information presented in this report will be included in the final Source Water Protection Plan.

Contingency Plan

The goal of contingency planning is to identify and document how the utility will prepare for and respond to any drinking water shortages or emergencies that may occur due to short and long term water interruption, or incidents of spill or contamination. Utilities should examine their capacity to protect their intake, treatment plant, and distribution system from contamination. They should also review their ability to use alternative sources, minimize water loss, meet future water demands, and operate during power outages. In addition, utilities should report the feasibility of establishing an early warning monitoring system. The following sections address these considerations and present information required for the source water protection plan.

Responding to Water Shortage or Contamination Event

Isolating or diverting any possible contaminant from the intake for a public water system is an important strategy in the event of an emergency. One commonly used method of diverting contaminants from an intake is establishing booms around the intake. This can be effective, but only for contaminants that float on the surface of the water. Alternatively, utilities can choose to pump floating contaminants from the water or chemically neutralize the contaminant before it enters the treatment facility.

Public utilities using surface sources should be able to close the intake by one means or another. However, depending upon the system, methods for doing so could vary greatly from closing valves, lowering hatches or gates, raising the intake piping out of the water, or shutting down pumps. Systems should have plans in place in advance as to the best method to protect the intake and treatment facility. Utilities may benefit from turning off pumps and, if possible, closing the intake opening to prevent contaminants from entering the piping leading to the pumps. Utilities should also have a plan in place to sample raw water to identify the movement of a contaminant plume and allow for maximum pumping time before shutting down an intake (see Early Warning Monitoring System section). The amount of time that an intake can remain closed depends on the water infrastructure and should be determined by the utility before an emergency occurs. The longer an intake can remain closed in such a case, the better.

Raw and treated water storage capacity in the event of such an emergency also becomes extremely important. Storage capacity can directly determine how effectively a water system can respond to a contamination event and how long an intake can remain closed. Information regarding the water shortage response capability of Town of Marlinton Public Water is provided in **Table 1**.

Statewide initiatives for emergency response, including source water related incidents, are being developed. These include the West Virginia Water/Wastewater Agency Response Network (WV WARN, see http://www.wvwarn.org/) and the Rural Water Association Emergency Response Team (see http://www.wvrwa.org/). Town of Marlinton Public Water has analyzed its ability to effectively respond to emergencies and this information is also provided in **Table 1**.

Table 1. Town of Marlinton Water Shortage Response Capability

Can the utility isolate or divert contamination from the intake or groundwater supply?	Yes	
Describe the utility's capability to isolate or divert potential contaminants:	The utility has access to booms they could deploy to protect the intake from surface contaminants.	
Can the utility switch to an alternative water source or intake that can supply full capacity at any time?	No	
Describe in detail the utility's capability to switch to an alternative source:	The utility does not have access to an alternative source of raw water that can fully support the treatment plant. They could possibly run a temporary line to the Greenbrier River to pump water back to the treatment plant during an emergency, but this would only be a temporary solution. Also, in the past they have treated water from the Greenbrier with the WV Rural Water Association's portable treatment facility or brought in tankers through the National Guard.	
Can the utility close the water intake to prevent contamination from entering the water supply?	Yes	
How long can the intake stay closed?	If the tanks were full and usage is consistent with average daily demand, the intake could only stay closed for approximately 24 hours before the Greenbrier Hill Tank was empty. The rest of the tanks in the system could last longer.	
Describe the process to close the intake:	The operator can manually close a valve that will shut off the plant from the intake.	
	The Town of Marlinton has 5 active treated water storage tanks and one that is currently out of commission. They also have 3 booster pump stations (BPS).	
	Greenbrier Hill Tank- 193,750 gal.	
Describe the very and two test of water	Cemetery Tank #1- 100,000 gal.	
Describe the raw and treated water storage capacity of the water system:	Cemetery Tank #2- 100,000 gal. (Out of Commission)	
	South Tank- 105,000 gal.	
	North Tank- 105,000 gal.	
	Brush Country Tank- 105,000 gal.	
	Total Active Treated Water Storage- 608,750 gal.	
	The utility does not have raw water storage.	

Is the utility a member of WVRWA Emergency Response Team?	No. The utility is a member of WV Rural Water Association but not the Emergency Response Team.
Is the utility a member of WV-WARN?	No
List any other mutual aid agreements to provide or receive assistance in the event of an emergency:	The utility does not have any formal or informal mutual aid agreements because there are no nearby water systems.

Operation During Loss of Power

Town of Marlinton Public Water analyzed and examined its ability to operate effectively during a loss of power. This involved ensuring a means to supply water through treatment, storage, and distribution without creating a public health emergency. Information regarding the utility's capacity for operation during power outages is summarized in **Table 2**.

Table 2. Town of Marlinton Public Water Generator Capacity

What is the type and capacity of the generator needed to operate during a loss of power?	The utility currently has a 150 KVA 120 kW generator at the water treatment plant, and several smaller portable gasoline generators that can be transported between booster stations.		
Can the utility connect to generator at intake/wellhead? If yes, select a scenario that best describes system.	No. Water is gravity fed from the intake in Knapp Creek to the treatment plant, so there is no need for a generator.		
Can the utility connect to generator at treatment facility? If yes, select a scenario that best describes system.	Yes- There is a 150 KVA 120 kW diesel generator at the treatment plant that is hardwired and ready to turn on, but it must be manually engaged.		
Can the utility connect to a generator in distribution system? If yes, select a scenario that best describes system.	Yes-All three booster stations have quick connect capability and can be powered by small portable gasoline generators that are stored in the local garage.		
Does the utility have adequate fuel on hand for the generator?	Yes		
	Gallons	Hours	
What is your on-hand fuel storage and how long will it last operating at full capacity?	Unknown	The diesel storage will last approximately 32-48 hours if the generator is used continuously.	

		Supplier		Contact Information
Provide a list of	Generator	Walker Caterpillar in Summersville, WV United Rentals- Roanoke, VA Woodford Oil- Marlinton, WV or Elkins, WV Burns Motor Freight- Marlinton, WV		304-872-4303
suppliers that could provide generators	Generator			540-427-7019
and fuel in the event of an emergency:	Fuel			(Marlinton) 304-799-4503
	Tuei			(Elkins) 304-636-2688
	Fuel			304-799-6106
Does the utility test the generator(s) periodically?		Yes. The utility runs a monthly 30 minute test on the diesel generator at the plant.		
Does the utility routinely maintain the generator?		Yes		
If no scenario describing the ability to connect to generator matches the utility's system or if utility does not have ability to connect to a generator, describe plans to respond to power outages:		The Town of Marlinton Water System can operate at full capacity during a power outage as long as they have fuel.		

Future Water Supply Needs

When planning for potential emergencies and developing contingency plans, a utility needs not only to consider their current demands for treated water but also account for likely future needs. This could mean expanding current intake sources or developing new ones in the near future. This can be an expensive and time consuming process, and any water utility should take this into account when determining emergency preparedness. Town of Marlinton Public Water has analyzed its ability to meet future water demands at current capacity, and this information is included in **Table 3**.

4

Table 3. Future Water Supply Needs for Town of Marlinton Public Water

Is the utility able to meet water demands with the current production capacity over the next 5 years? If so, explain how you plan to do so. Yes. Even though the water treatment plant sometimes operates at as much as 85% capacity, the utility does not expect any significant changes in population in the service area and should be able to handle the demand. No water line extensions are planned for the next five years, and there is no expected increase in population. The water system's opinions concerning the demand for the next five years are generally supported by population trends projected based on US Census Bureau 2000 and 2010 data. According to the 2005 Interim State Population Projections (1), WV as a whole will see a population decline between 2010 and 2030. In addition, researchers at the WVU College of Business and

	Economics specifically project that populations within Pocahontas County will decrease from population of 8,719 in 2010 to a projected population of 8,122 in 2020 (2). Census data and projections cannot account for increases in daily demand due to water line extensions. If in the future water line extension projects are proposed the daily demands will be reassessed to determine if the source and treatment facilities can support increased demand	
If not, describe the circumstances and plans to increase production capacity:	N/A	

⁽¹⁾US Department of Commerce, United State Census Bureau. 2005 Interim State Population Projections. Table 1. http://www.census.gov/population/projections/data/state/projectionsagesex.html. Accessed June 10, 2015.

Water Loss

In any public water system there is a certain percentage of the total treated water that does not reach the customer. Some of this water is used in treatment plant processes such as back washing filters or flushing piping, but there is usually at least a small percentage that goes unaccounted for. This can include unmetered uses, leaks, and other losses. To measure and report on this unaccounted for water, a public utility must use the same method used in the Public Service Commission's rule, *Rules for the Government of Water Utilities*, 150CSR7, section 5.6. The rule defines unaccounted for water as the volume of water introduced into the distribution system less all metered usage and all known non-metered usage which can be estimated with reasonable accuracy.

Metered usages are most often those that are distributed to customers. Non-metered usages that are being estimated include uses such as by the fire departments for fires or training, un-metered bulk sells, flushing to maintain the distribution system, and water used for backwashing filters and cleaning settling basins. By totaling the metered and non-metered uses the utility can calculate unaccounted for water. Note: To complete annual reports submitted to the PSC, utilities typically account for known water main breaks by estimating the amount of water lost. However, for the purposes of the source water protection plan, any water lost due to leaks, even if the system is aware of how much water is lost at a main break, is not considered a use. Water lost through leaks and main breaks cannot be controlled during a water shortage or other emergency and should be included in the calculation of percentage of water loss for purposes of the source water protection plan. The data in **Table 4** is taken from the most recently submitted Town of Marlinton Public Water PSC Annual Report.

Table 4. Water Loss Information*

Total Water Pumped (gal)	94,075,000
Total Water Purchased (gal)	0
Total Water Pumped and Purchased (gal)	94,075,000
Mains, Plants, Filters, Flushing, etc.	0

⁽²⁾ Christiadi, Ph.D., Deskins, John, Ph.D., Lego, Brian. WVU College of Business and Economics, Bureau of Business and Economic Research. March 2014. WVU Research Corporation. http://be.wvu.edu/bber/pdfs/BBER-2014-04.pdf Accessed June 10, 2015.

Water Loss Accounted for Except Main Leaks (gal)	Fire Department	0	
	Back Washing	606,000	
	Blowing Settling Basins	0	
Total Water Loss Ac	606,000		
Water Sold- Total Gallons (gal)		27,117,000	
Unaccounted For Lost Water (gal)		66,352,000	
Water lost	0		
Total gallons of Unaccounted for Lost Water and Water Lost from Main Leaks (gal)		66,352,000	
	For Water and Water Lost from Main Leaks (gal)	71%	
	with the WV Rural Water Association to		

If total percentage of Unaccounted for Water is greater than 15%, please describe any measures that could be taken to correct this problem:

The utility regularly works with the WV Rural Water Association to detect and fix leaks throughout the distribution system. In 2014 they found and fixed a 100,000 gallon per day (GPD) leak, which likely contributed to the high unaccounted for water that year. This incident prompted them to purchase a new leak detector.

Another factor is that the utility only reads meters once every 2 months, so some leaks may go unnoticed for long periods of time.

Early Warning Monitoring System

Public water utilities are required to provide an examination of the technical and economic feasibility of implementing an early warning monitoring system. Implementing an early warning monitoring system may be approached in different ways depending upon the water utility's resources and threats to the source water. A utility may install a continuous monitoring system that will provide real time information regarding water quality conditions. This would require utilities to analyze the data in order to establish what condition is indicative of a contamination event. Continuous monitoring will provide results for a predetermined set of parameters. The more parameters being monitored, the more sophisticated the monitoring equipment will be. When establishing a continuous monitoring system, the utility should consider the logistics of placing and maintaining the equipment, and receiving output data from the equipment.

Alternately, or in addition, a utility may pull periodic grab samples on a regular basis, or in case of a reported incident. The grab samples may be analyzed for specific contaminants. A utility should examine their Potential Sources of Significant Contamination (PSSCs) to determine what chemical contaminants could pose a threat to

6

^{*}This information is taken from the 2014 Public Service Commission Annual Report for Marlinton

the water source. If possible, the utility should plan in advance how those contaminants will be detected. Consideration should be given to where samples will be collected, the preservation and hold times for samples, available laboratories to analyze samples, and costs associated with the sampling event. Regardless of the type of monitoring (continuous or grab), utilities should collect samples for their source throughout the year to better understand the baseline water quality conditions and natural seasonal fluctuations. Establishing a baseline will help determine if changes in the water quality are indicative of a contamination event and inform the needed response.

Every utility should establish a system or process for receiving or detecting chemical threats with sufficient time to respond to protect the treatment facility and public health. All approaches to receiving and responding to an early warning should incorporate communication with facility owners and operators, with state and local emergency response agencies, with surrounding water utilities, and with the public. Communication plays an important role in knowing how to interpret data and how to respond.

Town of Marlinton Public Water has analyzed its ability to monitor for and detect potential contaminants that could impact its source water. Information regarding this utility's early warning monitoring system capabilities can be found in **Table 5** and in **Appendix A.**

Table 5. Early Warning Monitoring System Capabilities

Does your system currently receive spill notifications from a state agency, neighboring water system, local emergency responders, or other facilities? If yes, from whom do you receive notices?	There are no water systems or users upstream of Marlinton to notify them of a spill or contamination, but they have received notices from the Pocahontas County Office of Homeland Security & Emergency Management.		
Are you aware of any facilities, land uses, or critical areas within your protection areas where chemical contaminants could be released or spilled?	There is agricultural land upstream of Marlinton on Knapp Creek as well as a few gas stations, some of which are abandoned and may have underground storage tanks remaining. Knapp Creek runs adjacent to a Rt. 39 for miles and there are several bridge crossings just upstream from Marlinton.		
Are you prepared to detect potential contaminants if notified of a spill?	No		
	Laboratories		
	Name	Contact	
List laboratories (and contact information) on whom you would rely	REIC Laboratory- Beaver, WV	800-999-0105, 304-255-2500, info@reiclabs.com	
to analyze water samples in case of a reported spill.	WV State Laboratory, Environmental Chemistry 304-965-2694 Section- Charleston, WV		
	Analabs- Crab Orchard, WV 1-800-880-6406, analabs@analabsinc.co		

Do you have an und baseline or normal con source water quality th seasonal fluctu	ditions for your nat accounts for	Yes. The operator takes daily samples for pH, conductivity, an turbidity and has established baseline water quality condition for Knapp Creek.		• •
Does your utility currently monitor raw water (through continuous monitoring or periodic grab samples) at the surface water intake or from a groundwater source on a regular basis?				dix A.
	Monitoring System	MonitoringYSI EXO 2Hach sc1000SoSystem(Table B-1)(Table B-2)Monitoring		Real Tech Full Scanning Monitoring System (Table B-3)
Provide or estimate the capital and O&M costs for your proposed early	Capital	Approximate Capital Cost- \$19,000	Approximate Capital Cost- \$18,907	Approximate Capital Cost- \$24,155
warning monitoring system or upgraded system.	Yearly O & M	Approximately with Hach Service \$2,258 Small Data management Monitor		Replacement Lamps- \$1,480 Smart-Sense Monitoring Service- \$499
Do you serve more customers? If so, plea methods you use to same technical leve	se describe the monitor at the Is utilized by	No		

Single Source Feasibility Study

If a public water utility's water supply plant is served by a single—source intake in a surface water source of supply or a surface water influenced source of supply, the submitted source water protection plan must also include an examination and analysis of the technical and economic feasibility of developing alternative sources of water to provide continued safe and reliable public water service in the event its primary source of supply is detrimentally affected by contamination, release, spill event or other reason. These alternatives may include a secondary intake, two days of raw or treated water storage in addition to what is currently stored to meet water system design standards, interconnection with neighboring systems, or other options identified on a local level. Note that a secondary intake must draw water supplies from a substantially different location on the same water source, or from an entirely different water source.

8

To accomplish this requirement, the utility has examined existing and possible alternatives and ranked them by their technical, economic, and environmental feasibility according to the West Virginia Department of Health and Human Resources Bureau for Public Health (WVBPH) feasibility study guide. This guide provides several criteria to consider for each category organized in a Feasibility Study Matrix. By completing the Feasibility Study Matrix, the utility has documented the process used to examine the feasibility of each alternative, and has generated scores that compare the alternatives. The Feasibility Study Matrix is attached as **Appendix B**.

In addition to the Feasibility Study Matrix spreadsheet, a brief narrative is also included in **Appendix B** that identifies one or more feasible alternative, provides a summary of data used to make this determination, and briefly summarizes the results of the matrix.

Appendix A. Early Warning Monitoring System

Form B-Proposed Early Warning Monitoring Systems

Town of Marlinton Public Water

Primary Surface Water Source:

There are many possible solutions for designing and installing an early warning monitoring system. Over time, this technology changes and improves and it is difficult to determine the type of equipment that will be useful and effective in the long term. This plan is a proposed system that would work for Town of Marlinton Public Water using current technology and the current plant and intake configuration.

The primary source of raw water for the Marlinton water treatment plant is Knapp Creek, which flows into the Greenbrier River just west of Marlinton. The treatment plant is located across a small neighborhood from the intake, approximately 1,500' away. The raw water is gravity fed from the intake to the plant, and there are no pump houses or other structures near the intake to house the following monitoring systems, so a new structure would likely need to be constructed.

B-1. YSI EXO 2 Monitoring System Proposal

Describe the type of early warning detection equipment that could be installed, including the design.

This plan uses the YSI EXO 2 Multiport Sonde, which can accommodate 6 different sensors and has an automatic wiper mechanism to remove biofouling from the sensor tips, which reduces maintenance time. The sonde is built to be resilient and low maintenance, and is capable of providing online water quality monitoring that can be transmitted real time to a designated PC or website that can be accessed by any designated user.

The sonde can hold up to 6 sensors, but this plan recommends 4 of the more basic sensors that would be sufficient to detect any sudden shifts in water quality in any West Virginia stream or river. These sensors would include: conductivity/temperature, optical dissolved oxygen, pH, and fluorescent dissolved organic matter (fDOM). The fDOM sensor could potentially detect petroleum products in the water but is not entirely reliable for this purpose. At this time, YSI does not make a sensor for petroleum products for the EXO 2 but likely will in the future, at which time it is recommended that the utility purchase it. Other sensors could be purchased in the future as well if deemed necessary by the utility.

Where would the equipment be located?

The sonde would be attached to the intake pipe itself, which extends into Knapp Creek. This would provide a stable foundation for the equipment and also ensure that the device is able to sample the water that is actually entering the intake pipe and not missing potential contaminants because it is located on the wrong side of the stream or too far from the intake. The suggested method of mounting the sonde involves drilling

holes in a PVC pipe, capping the end, inserting the sonde and attaching to the intake pipe structure using brackets or chains. This will protect the sensor from debris and hide it from view somewhat.

The sonde would be hardwired to the YSI Storm 3 data analysis/telemetry system. Since the Marlinton water treatment plant is not next to the intake, a new structure would need to be constructed to house the Storm 3. The unit is contained in a waterproof case and comes with a solar photovoltaic panel capable of powering both the data analysis unit and the sonde, so long as the sonde is hardwired to the Storm 3. The device can be battery powered as well if this is not an option.

What would the maintenance plan for the monitoring equipment entail?

The maintenance plan for the system would involve replacing the dissolved oxygen sensor cap, replacing the pH electrode cap, and purchasing pH, turbidity, and conductivity calibration solution on a yearly basis. The sonde itself is designed to last from 5-10 years and should be inspected and calibrated once a month.

In addition, there is a recurring yearly fee associated with the real-time data/telemetry package for managing the website and data analysis.

Describe the proposed sampling plan at the monitoring site.

The sonde can be programmed to take regular measurements at any intervals defined by the operator or user. These measurements can also be taken in bursts, averaged over a period of time, or modified automatically as water quality levels change. Data is stored in the Storm 3 and transmitted to the plant computer as it is recorded. This information can be transmitted wirelessly via a cellular modem. The cellular transmitter is powerful enough to work even in areas with poor cell reception.

Describe the proposed procedures for data management and analysis.

The Storm 3 package includes data management software that can generate data reports and presentations and allow the user to modify and adjust sampling schedules remotely from the plant.

The sonde can be programmed to alert the user when any of the water quality parameters exceeds a user-defined level. This will allow the operator to program the system to notify them when their previously observed baseline conditions are exceeded in time for them to shut down the pumps and close off the intake. The operator can receive alerts via text message and email at the treatment plant computer or any designated cell phone.

B-2. Hach sc1000 Monitoring System Proposal

Describe the type of early warning detection equipment that could be installed, including the design.

This plan uses the Hach sc1000 online monitoring system, which includes a controller, back panel, display module, and trough. Raw water is pumped into the trough from the source where it can be sampled in real time. The probe module can accommodate up to 6 sensors, which means it can monitor up to 6 parameters

at once. This plan suggests the following sensors: conductivity, pH, turbidity, and dissolved oxygen. Hach can also supply a sensor to detect oil in water, which would cost an additional \$18,414.00 and would possibly be a good investment for any water system if sufficient funds were available. This sensor is not included in the quoted capital cost. There are several other probes for other parameters that are available from Hach, and these could be purchased as deemed necessary by the utility.

Where would the equipment be located?

The sc1000 Controller, back panel, and trough would be housed in a new structure that would be built on the bank near the intake. A small diameter line would run out from the plant the length of the intake pipe to pull raw water back to the controller where it would flow into the trough for sampling. The closer this sampling line can be to the actual intake, the more accurately it will reflect the raw water that is actually entering the plant. This option would require the utility to purchase a line or hose long enough to reach the intake pipe and a small pump. The line and pump could be fairly low-tech and inexpensive, as the sc1000 only requires a minimum of 900 mL/min. of flow.

The controller will be equipped with the MODBUS advanced communications/networking unit, which can transmit readings in real time directly to the SCADA system in the treatment plant to alert the operators in any change in baseline water quality. The sc1000 can either be hardwired to the computer at the treatment plant or it can use a cellular modem to transmit the data if there is sufficient cellular signal.

What would the maintenance plan for the monitoring equipment entail?

The maintenance plan for the system would entail a yearly maintenance contract with the manufacturer. A Hach Service Representative would regularly service the monitoring equipment. This service would take care of all parts, labor, and preventative maintenance and would include 2-3 scheduled maintenance visits per year.

Describe the proposed sampling plan at the monitoring site.

The sc1000 monitors the quality of water flowing through the trough in real time, and can transmit this data back to the plant as it is collected. The actual timing of the sampling plan could be determined by the utility.

Describe the proposed procedures for data management and analysis.

It is recommended that the utility purchase the Hach Universal Data Gateway software, which would help to process and analyze the incoming information into easily interpreted reports. The price of this software is included in the rough capital cost.

B-3. Real Tech Full Scanning UV-VIS Monitoring System

Describe the type of early warning detection equipment that could be installed, including the design.

This plan utilizes the Real Tech Full Scanning UV-VIS monitoring system, which provides full ultraviolet/visible scanning for organics and other specific parameters that may indicate a contamination event. The included PC Controller is pre-loaded with the software needed to store and process this information to establish a "normal" or "baseline" set of conditions for the raw water source. In addition to the UV-VIS sensors, the system can accommodate up to 8 additional sensors that are available from a third party and priced separately.

This plan includes pricing and details for a system equipped to measure conductivity, pH, temperature, and dissolved oxygen. Other additional sensors could be purchased and added if deemed necessary by the utility.

Where would the equipment be located?

In the case of Marlinton, the UV-VIS Full Monitoring System would be housed in a new monitoring building that would located as close to the raw water intake as possible. A small-diameter line or hose would run from the treatment plant to the intake pipe to pull raw water back to the controller where it would flow into the unit for sampling. The closer the end of the sampling line can be to the actual intake, the more accurately it will reflect the raw water that is actually entering the plant. This option would require the utility to purchase enough line to reach the intake as well as a small pump. The line and pump could be fairly small and inexpensive, as the system only requires a minimum of 300-800 mL/min. of flow. The system also includes the Real Pump Clean System, which provides flow and automatic chemical cleaning of the sensors and reduces maintenance time.

This system would require a reliable electrical source, but the intake is not far from the existing electrical grid and it shouldn't be a problem to get power to the new monitoring shed.

What would the maintenance plan for the monitoring equipment entail?

The maintenance plan for the system would require about 2 hrs/month for scheduled maintenance tasks. It is also recommended that a monthly laboratory reference sample is taken to effectively calibrate the sensors.

The Smart-Sense Web Monitoring Service package costs an additional \$499/yr., but provides additional support and remote accessibility by Real Tech, and it is recommended. The Deuterium and Tungsten lamps would also need to be replaced every six months at a cost of \$740.

Describe the proposed sampling plan at the monitoring site.

The Full Scanning UV-VIS system continuously monitors raw water as it is pumped to through the unit, and is capable of establishing baseline conditions that account for seasonal variability, which can help to reduce false alarms.

Describe the proposed procedures for data management and analysis.

The Real Tech monitoring system is capable of communicating with the treatment plant via Modbus, Ethernet, USB, or cell modem. It can be integrated with the treatment plant's SCADA system to provide real-time information about conditions at the intake and provides full remote monitoring.

It is also recommended that the utility take advantage of the Smart-Sense Web Monitoring service offered by Real-Tech to analyze and interpret data taken by the monitoring system. This consultation service requires an additional service fee, which is included in this quote.

Single Source Alternatives Feasibility Study

TOWN OF MARLINTON PUBLIC WATER SYSTEM

PWSID: WV3303803

PURPOSE

This Source Water Alternatives Feasibility Study (the Study) is prepared in accordance with legislative rule 64CSR3. The rule provides for numerous source water protection planning activities. As part of these activities, if a secondary source of water supply is not available, public water systems (PWSs) are required to prepare a study to determine the technical and economic feasibility of the following options to provide continued water service in the event the source water becomes contaminated. The options include:

- Constructing or establishing a secondary or backup intake which would draw water supplies from a substantially different location or water source.
- Constructing additional raw water storage capacity and/or treated water storage capacity to provide at least two days of system storage based on the plant's maximum level of production experience in the last year.
- Creating or constructing an operation interconnection(s) between PWS with other PWS plants or another PWS to allow the utility to receive its water from a different source of supply.
- Any other alternative which is available to the PWS to secure safe and reliable alternative water supply.

If one or more of the above options is determined to be feasible, the PWS is required to provide additional detail on the costs, risks and benefits of implementing each feasible alternative.

This Study utilizes the matrix provided by the West Virginia Department of Health and Human Resources, Bureau for Public Health to determine the feasibility of the alternatives for the Town of Marlinton PWS. The matrix provides a systematic method of evaluating alternatives using numerous factors and a system to rank the economic, technical and environmental feasibility of each alternative.

SYSTEM DESCRIPTION

The Marlinton PWS provides water service to approximately 1,400 people. Located in Pocahontas County, the PWS uses Knapp Creek as its raw water supply. **Figure 1** presents the location of the PWS. The current permitted capacity of the WTP is 0.432 MGD and it uses coagulation, sedimentation, filtration, disinfection and fluoridation to treat the water to potable standards. **Table 1** below provides a summary of the capacity and recent average annual and maximum day demands for the Marlinton system.

Table 1. Town of Marlinton Capacity and Demands

Parameter	Value
2014 Average Day Demand (ADD) (MGD)	0.232
2014 Maximum Day Demand (MDD) (MGD)	0.367
WTP Capacity (MGD)	0.432
WTP Utilization	85.0%
MDD to ADD Ratio ⁽¹⁾	1.58

⁽¹⁾ Maximum Daily Demand (MDD) / Average Daily Demand (ADD)

Storage in the Marlinton system is provided by elevated storage tanks throughout the distribution system. **Table 2** provides a summary of the tanks.

Table 2. Town of Marlinton Storage

Name	Туре	Volume (gallons)
Greenbrier Hill Tank	Elevated	193,750
Cemetery Tank #1	Elevated	100,000
South Tank	Elevated	105,000
North Tank	Elevated	105,000
Brush County Tank	Elevated	105,000
Total		608,750
2014 ADD (MGD)		0.232
Days Storage		1 day*

^{*}The days of storage is limited by the Cemetery and Greenbrier Hill tanks as described below.

The Cemetery and Greenbrier Hill tanks are the main tanks for the system. The South tank is filled mainly by the Cemetery tank. The North tank is filled by the Greenbrier Hill tank and in turn fills the Brush County tank. The South and Brush County tanks are close on meeting the 20% turnover requirement and are only partially filled on a regular basis.

In the event that the treatment plant had to shut down, the Greenbrier Hill tank would be the first to run dry. If the tank were full staff believes there would be about 24 hours of storage.

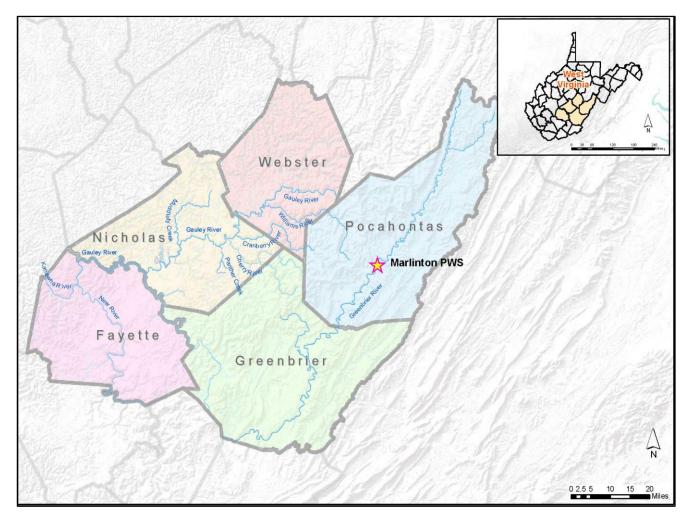


Figure 1. Town of Marlinton Location Map

B-3

ALTERNATIVES

The alternatives evaluated are based on matching the proposed capacity of the Marlinton WTP. This will provide a common level of service among all alternatives. **Table 3** below provides the basis for sizing each alternative:

Table 3. Alternatives - Sizing Basis

Alternative	Backup Intake	Raw Storage	Treated Storage	Interconnect
Basis	Max day	2 days of max day demand	2 days of max day demand	Average day
Value	0.432 MGD	0.864 MG	0.864 MG	0.273 ⁽¹⁾ MGD

(1) Calculated using MDD/ADD Ratio

Cost estimates were developed based on a conceptual analysis of each alternative. All costs were reviewed for accuracy and compared with actual costs of similar projects and RSMeans CostWorks 2014. The estimates include materials, installation and contractor's overhead and profit. The estimates are also based on the following assumptions and considerations:

- Piping is priced as mechanical joint ductile iron unless noted otherwise, and includes provisions for road crossings, aerial crossings and site restoration.
- Raw water and treated water storage tanks are priced as steel ground tanks with site work and installation included.
- Pumps are sized and priced based on conceptual level estimates of the required pumping conditions (flow and total dynamic head).
- Precast concrete vaults and metal pump enclosures are sized to house the estimated number of pumps required along with HVAC, electrical, and controls equipment.
- Electrical and controls costs are estimated at 10% of the overall facility costs including pumps.
- Site work is estimated as a lump sum cost based on the approximate size of the disturbed area and other factors that affect level of effort (i.e. whether or not the site is within the 100-yr floodplain).
- Estimates include a 15% engineering allowance and a 30% contingency.
- For purposes of this comparative analysis, costs for land acquisition were estimated at an average \$70,000 per acre. This value was used consistently for each alternative and was selected as an average cost to account for unknown site specific variables (e.g. land and structure values, potential remediation costs, acquisition services, etc.).

All capital costs are annualized over a twenty year period using a 2.5% interest rate and 0.50% closing costs.

O&M cost estimates are developed based on the specific operational requirements for each alternative and include labor and materials. Estimates of power consumption of pumps are based on pump size, number of pumps, and estimated hours of operation. O&M tank estimates assume the exterior and interior are repainted every ten years and the raw water tanks are cleaned annually and treated water tanks cleaned every 5 years.

Backup Intake

The closest viable option for a backup intake is on the Greenbrier River, at a location about three quarters of a mile west of the water treatment plant and upstream of the Knapp Creek discharge. USGS gage data confirm there is ample flow on the Greenbrier to satisfy Marlinton's demand. This option involves the installation of roughly 3,200 feet of 6-inch pipe along the current raw water source, Knapp Creek, an intake, and a pump station.

Raw Water Storage

The raw water storage option involves the installation of two 500,000 gallon tanks. Much of the available land around the WTP lies within the 100 year flood plain so a remote site for raw water storage was selected. Raw water pumps at the water treatment plant will fill the tanks through approximately 6,840 feet of 6-inch pipe, and a pump station is required to transfer raw water from the tanks to the plant through 400 feet of 6-inch pipe.

Treated Water Storage

These tanks would be located at the same site and would have a similar size and configuration as those for the raw water storage alternative. Providing treated water storage over and above the required two-day ADD presents some operational challenges for the PWS in meeting the 20% daily turnover requirement. With full tanks, the PWS will be faced with having to drain water during periods of low demand to meet the turnover requirement which will increase the non-revenue for water for the system.

Interconnection

Cheat Mountain Water System is nearly 30 miles away, but it's the nearest community with ample capacity to meet Marlinton's demand. Implementation of this option involves the installation of roughly 147,840 feet of 4-inch pipe and water would be transferred from plant to plant by gravity, as Cheat Mountain is over 2,000 feet higher in elevation than Marlinton. Although this option is explored as a possible interconnection, it is cost prohibitive exclusive of the other ranking criteria. In addition, Cheat Mountain Water System may not be able to supply water during the winter season, when there are more visitors to the ski resort.

FEASIBILITY DETERMINATION

The attached matrix and sub-schedules (**Tables 4, 5, 6, and 7**) present the feasibility rankings of the alternatives. An interconnection with Cheat Mountain Water Co. ranks as a feasible alternative, but the capital costs are so high that the alternative was eliminated based on economic criteria.

Treated water storage is a possible alternative but the operational issues associated with having to maintain a 20% turnover in volume reduces its desirability.

Raw water storage ranks as a feasible alternative with the economic criteria being the primary negative criteria.

A backup intake on the Greenbrier River is the most cost effective and provides the most amount of operational flexibility.

Table 4. Feasibility Matrix

	Economic Criteria							Te	echnical Cr	iteria				Env	vironmen	ıtal Cri	teria		Final Score	Capital Cost	Comments
Water			45%						45%						10	%			100%		
Management Strategy Description	Operation and Maintenance Costs	Capital Costs	Total	Total %	Weighted Total	Permitting	Flexibility	Resilience	Institutional Requirements	Total	Total %	Weighted Total	Environmental Impacts	Aesthetic Impacts	Stakeholder Issues	Total	Total %	Weighted Total			
Backup Intake	3.0	3.0	6.0	100.0%	45.0%	2.4	3.0	3.0	2.0	10.4	86.7%	39.0%	2.0	2.0	2.0	6.0	66.7%	6.7%	90.7%	\$1,174,000	New intake structure on the Greenbrier River with a pipeline running parallel to Knapp Creek to the WTP
Interconnect	3.0	1.0	4.0	66.7%	30.0%	2.2	2.5	2.7	2.3	9.7	80.8%	36.4%	3.0	3.0	2.0	8.0	88.9%	8.9%	75.3%	\$9,003,000	Cheat Mountain is the nearest PWS with sufficient capacity to supply Marlinton. Proposed route would generally follow Route 55.
Treated water storage	3.0	1.0	4.0	66.7%	30.0%	1.6	1.5	2.3	2.7	8.1	67.5%	30.4%	3.0	3.0	2.0	8.0	88.9%	8.9%	69.3%	\$2,631,000	Tank would be located at a site remote from the WTP
Raw Water Storage	3.0	1.0	4.0	66.7%	30.0%	2.4	3.0	2.3	2.7	10.4	86.7%	39.0%	3.0	3.0	2.0	8.0	88.9%	8.9%	77.9%	\$2,923,000	Tank would be located at a site remote from the WTP

Table 5. Alternatives Table

Criteria	Question	Backup Intake	Feasibility	Interconnect	Feasibility	Treated Water Storage	Feasibility	Raw Water Storage	Feasibility
	Economic Criteria								
	ne total current budget year cost to d maintain the PWSU (current budget year)?	\$362,089.00		\$362,089.00		\$362,089.00		\$362,089.00	
	Describe the major O&M cost requirements for the alternative?	Maintenance for pump station and intake	3	Labor to maintain pipe and interconnect	3	Electricity for transfer pumps, labor, maintenance; does not include water flushed	3	Electricity for transfer pumps, labor, recurring maintenance	3
O and M Costs	What is the incremental cost (\$/gal) to operate and maintain the alternative?	\$896.00	3	\$624.00	3	\$11,960.00	3	\$31,608.00	3
	Cost comparison of the incremental O&M cost to the current budgeted costs (%)	0.25%	3	0.17%	3	3.30%	3	8.73%	3
	O and M-Feasibility Score		3.0		3.0		3.0		3.0
	ne capital improvements required to mplement the alternative.	Intake structure and pump station; 3,200 ft. of 6" diameter pipe		148,000 feet of 4" pipe from Cheat Mountain Water Co.		Two 0.5 MG ground storage tanks and transfer pumps		Two 0.5 MG ground storage tank and transfer pumps	
	What is the total capital cost for the alternative?	\$1,174,000	3	\$9,003,000	1	\$2,631,000	1	\$2,923,000	1
Capital Costs	What is the annualized capital cost to implement the alternative, including land and easement costs, convenience tap fees, etc. (\$/gal)	\$76,000.00	3	\$580,400.00	1	\$169,612.00	1	\$189,000.00	1
	Cost comparison of the alternatives annualized capital cost to the current budgeted costs (%)	20.99%	3	160.29%	1	46.84%	1	52.20%	1
Co	apital Cost-Feasibility Score		3.0		1.0		1.0		1.0

Table 5. Alternatives Table (Cont'd)

Criteria	Question	Backup Intake	Feasibility	Interconnect	Feasibility	Treated Water Storage	Feasibility	Raw Water Storage	Feasibility
	Technical Criteria								
	Provide a listing of the expected permits required and the permitting agencies involved in their approval.	See Permitting Sub- schedule	2	See Permitting Sub- schedule	2	See Permitting Sub- schedule	2	See Permitting Sub-schedule	2
	What is the timeframe for permit approval for each permit?	See Permitting Sub- schedule	2	See Permitting Sub- schedule	2	See Permitting Sub- schedule	2	See Permitting Sub-schedule	2
Permitting	Describe the major requirements in obtaining the permits (environmental impact studies, public hearings, etc.)	See Permitting Sub- schedule	2	See Permitting Sub- schedule	2	See Permitting Sub- schedule	2	See Permitting Sub-schedule	2
	What is the likelihood of successfully obtaining the permits?	No identified barriers	3	No identified barriers	2	Potential for non-revenue water issues	1	No identified barriers	3
	Does the implementation of the alternative require regulatory exceptions or variances?	None identified	3	None identified	3	In order to avoid flushing water additional studies may be required to support a variance from the 20% turnover rule	1	None Identified	3
F	Permitting-Feasibility Score		2.4		2.2		1.6		2.4
	Will the alternative be needed on a regular basis or only used intermittently?	Intermittent	3	Intermittent	2	Full time operations	2	Full time operations; with ability for intermittent	3
Flexibility	How will implementing the alternative affect the PWSU's current method of treating and delivering potable water including meeting Safe Drinking Water Act regulations? (ex. In the case of storage, will the alternative increase the likelihood of disinfection byproducts?)	No changes in treatment or water delivery with the backup source	3	No identified changes	3	With the requirement to turn over 20% of tank volume the system will be required to flush water during days when demands are low.	1	There will be additional operating requirements for the new equipment but the existing treatment process will be minimally affected.	3
	Flexibility-Feasibility Score		3.0		2.5		1.5		3.0

Table 5. Alternatives Table (Cont'd)

Criteria	Question	Backup Intake	Feasibility	Interconnect	Feasibility	Treated Water Storage	Feasibility	Raw Water Storage	Feasibility
	Will the alternative provide any advantages or disadvantages to meeting seasonal changes in demand?	Greenbrier River is a larger water body than Knapp Creek	3	Yes. Interconnect will provide back up in other emergency situations	3	Yes; only short term	2	Yes; only short term	2
Resilience	How resistant will the alternative be to extreme weather conditions such as drought and flooding?	Greenbrier River is a larger water body than Knapp Creek	3	May act as an additional source of supply	2	Yes; only short term	2	Yes; only short term	2
	Will the alternative be expandable to meet the growing needs of the service area?	Greenbrier River is a larger water body than Knapp Creek	3	Yes	3	Yes	3	Yes	3
Re	silience-Feasibility Score		3.0		2.7		2.3		2.3
	Identify any agreements or other legal instruments with governmental entities, private institutions or other PWSU required to implement the alternative.	None identified	2	Emergency Usage agreement with Cheat Mountain Water Co.	2	None identified	3	None Identified	3
Institutional Requirements	Are any development/planning restrictions in place that can act as a barrier to the implementation of the alternative?	None identified	2	None Identified	3	None identified	3	None Identified	3
	Identify potential land acquisitions and easements requirements.	Easement and/or property purchase for intake and pump stations	2	Easement and/or property purchase for pump station.	2	The tank site would need to be acquired from its current owner	2	The tank site would need to be acquired from its current owner.	2
Institutiona	Il Requirements-Feasibility Score		2.0		2.3		2.7		2.7
E	invironmental Criteria								
Environmental Impacts	Identify any environmentally protected areas or habitats that might be impacted by the alternative.	Intake structure and pipe route are likely to require surveys for T&E species	2	None identified	3	None identified	3	None Identified	3
Environm	ental Impacts-Feasibility Score		2.0		3.0		3.0		3.0

Table 5. Alternatives Table (Cont'd)

Criteria	Question	Backup Intake	Feasibility	Interconnect	Feasibility	Treated Water Storage	Feasibility	Raw Water Storage	Feasibility
Aesthetic	Identify any visual or noise issues caused by the alternative that may affect local land uses?	None identified	2	None identified	3	None identified	3	None identified	3
Impacts	Identify any mitigation measures that will be required to address aesthetic impacts?	None identified	2	None identified	3	None identified	3	None identified	3
Aesti	hetic Impacts-Feasibility Score		2.0		3.0		3.0		3.0
	Identify the potential stakeholders affected by the alternative.	See Stakeholder Sub- schedule	2	See Stakeholder Sub-schedule	2	See Stakeholder Sub- schedule	2	See Stakeholder Sub-schedule	2
Stakeholder Issues	Identify the potential issues with stakeholders for and against the alternative.	See Stakeholder Sub- schedule	2	See Stakeholder Sub-schedule	2	See Stakeholder Sub- schedule	2	See Stakeholder Sub-schedule	2
	Will stakeholder concerns represent a significant barrier to implementation (or assistance) of the alternative?	Possibly from an environmental perspective	2	No	2	No	2	No	2
Stake	cholder Issues-Feasibility Score		2.0		2.0		2.0		2.0
	Comments	New intake structure on the River with a pipeline runni Knapp Creek to the	ing parallel to	Cheat Mountain is the with sufficient capac Marlinton. Proposed generally follow F	ity to supply route would	Tank would be located at a from the WTF		Tank would be loca remote from t	

Table 6. Permitting Sub-Schedule

Permits Required											
Agency	Permit	Backup Intake	Interconnect	Raw Water Storage	Treated Water Storage	Other	Notes				
WV Bureau Public Health	Construction	yes	yes	yes	yes						
US ACOE ⁽¹⁾	404 Permit	yes	no	no	no						
Local/State Road Agency	ROW Utilization	no	yes	yes	yes						

(1) US Army Corps of Engineers

	Application Period Duration											
Agency	Permit	Backup Intake	Interconnect	Raw Water Storage	Treated Water Storage	Other	Notes					
WV Bureau Public Health	Construction	90 days	90 days	90 days	90 days							
US ACOE	404 Permit	180 days	NA	NA	NA							
Local/State Road Agency	ROW Utilization	NA	90 days	90 days	90 days							

	Application Requirements											
Agency	Permit	Backup Intake	Interconnect	Raw Water Storage	Treated Water Storage	Other	Notes					
WV Bureau Public Health	Construction	Engineers Report; Construction Drawings; Specifications	Engineers Report; Construction Drawings; Specifications	Engineers Report; Construction Drawings; Specifications	Engineers Report; Construction Drawings; Specifications							
US ACOE	404 Permit	Construction Drawings; Construction Plan	NA	NA	NA							
Local/State Road Agency	ROW Utilization		Construction Drawings	Construction Drawings	Construction Drawings							

Other Considerations										
Agency	Permit	Backup Intake	Interconnect	Raw Water Storage	Treated Water Storage	Other	Notes			
WV Bureau Public Health	Construction									
US ACOE	404 Permit									
Local/State Road Agency	ROW Utilization		Bridge crossing							

B-12 September 2015

Table 7. Stakeholders Sub-Schedule

		List concerns fo	or each alternative by st	akeholder		
Stakeholder Group	Backup Intake	Interconnect	Raw Water Storage	Treated Water Storage	Other	Notes
Residential Customers	Cost impacts; Improved protection from contamination	Cost impacts; Improved protection from contamination	Aesthetic concerns; Cost impacts; Improved protection from contamination	Aesthetic concerns; Cost impacts; Improved protection from contamination		Neutral response
System Owner	Additional operations; Cost impacts	Additional operations; Cost impacts	Additional operations; Cost impacts	Operational issue with storage turnover; Cost impacts		Positive to meet regulations and improve service; Negative for treated water storage
Industrial/Commercial Customers	Cost impacts; Improved service and protection from contamination	Cost impacts; Improved service and protection from contamination	Cost impacts; Improved service and protection from contamination	Cost impacts; Improved service and protection from contamination		Neutral to positive response; less sensitive to costs over improved service
Environmental Interest Groups	Minor	Minor	Minor	Minor		Average to negative response

CONCLUSION

Based on the analysis and findings presented, Tetra Tech offers the following conclusions:

- 1. The existing storage capacity in Marlinton is more than the 2 day minimum requirement. Based on conversations with local staff, the remote tanks in the existing system have difficulty meeting the 20% turnover requirement and are sometimes not completely filled. In the event that the WTP should be off-line, staff believes there would be about one day of storage with the Greenbrier tank being the first to run dry.
- Based on the scoring system, a backup intake and raw water storage are the most feasible alternatives
 for the Marlinton system with the backup intake on the Greenbrier the most preferred. Figures 2 and 3
 provide a conceptual schematic of the alternatives and Tables 8 and 9 provide detail on the opinion of
 probable costs. These two alternatives should be considered for further analysis.

Figure 2. Town of Marlinton Backup Intake Conceptual Drawing

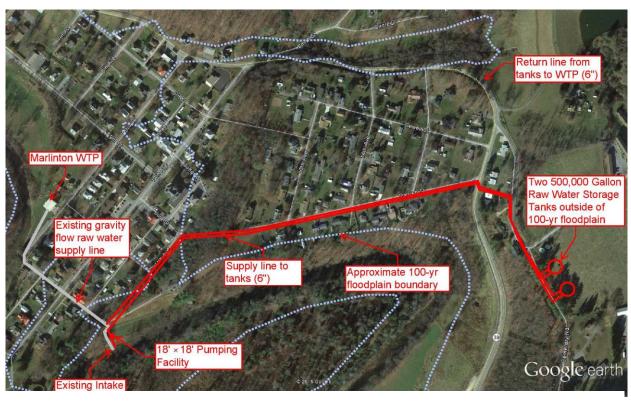


Figure 3. Town of Marlinton Raw Water Storage Conceptual Drawing

Table 8. Backup Intake- Opinion of Cost

	Facilit	y Descriptio	n/Capital Cost						
Item	Quantity	Unit	Unit Cost	Total Cost					
Intake Screen	1	EA	\$2,000	\$2,000					
Intake Piping	20	FT	\$137	\$2,740					
Piping to WTP	3,200	FT	\$49	\$156,800					
Raw Water Pumps	3	EA	\$100,000	\$300,000					
Pre-Cast Vault / Wet well	1	EA	\$130,000	\$130,000					
Electrical and Controls	1	LS	10% Pumps and Facility Cost	\$43,000					
Site Work	1	LS	\$120,000	\$120,000					
			Subtotal	\$754,540					
			Contingency @ 30%	\$226,362					
			Eng. Permit, etc. @ 15%	\$113,181					
			Land Acquisition	\$80,124					
	Total Backup Intake Capital Costs \$1,								

Table 9. Raw Water Storage – Opinion of Cost

	Facility	/ Description	n/Capital Cost					
ltem	Quantity	Unit	Unit Cost	Total Cost				
Raw Water Ground Storage Tanks	2	EA	\$614,250	\$1,228,500				
Raw Water Pumps	3	EA	\$100,000	\$300,000				
Piping	6,840	FT	\$49	\$335,160				
Electrical and Controls	1	LS	10% Pump and Facility Cost	\$30,000				
Site Work	1	LS	\$50,000	\$50,000				
			Subtotal	\$1,943,660				
			Contingency @ 30%	\$583,098				
			Eng. Permit, etc. @ 15%	\$291,549				
			Land Acquisition	\$105,000				
	Total Raw Water Storage Capital Costs							

APPENDIX E. SUPPORTING DOCUMENTATION

E-1. Source Water Protection Team Meeting Notes

Date: 3/2/2016

Location: Marlinton City Hall, Marlinton, WV

- On Wednesday, March 2, 2016, the Source Water Protection Team for Marlinton Public Water met at City Hall in Marlinton to discuss the draft of the updated Source Water Protection Plan. All of the suggested members were in attendance, including chief operator Dave Johnson, Mayor Sam Felton, Cindy Wilfong, Travis Cook, J.P. Duncan, Grazia Apolinares, and Don Morrison.
- Russell presented the draft plan and mapping information to the team and they discussed the potential contaminants as well as some of their priority PSSCs and concerns.
 - Dave Johnson pointed out that, although the main pump is a 30 hp pump, the backup is only 25 hp, so in the even that their main pump went out their ability to supply at full capacity could be impacted.
 - The team reported that the main source should be called Knapp Creek, not Knapps Creek.
 - Highway traffic is the primary concern for Marlinton Water. Rt. 39 runs parallel to Knapp Creek for several miles upstream of the intake. Other than the road, there is not much upstream that could pose a threat. Pocahontas County Emergency Management has proposed conducting a commodity flow study for the county and the proposal has been accepted, but it has not been done yet. The team representatives of Pocahontas Count EM will look into getting this study completed.
 - Grazia noted that she was aware of a watershed base plan that had been completed for parts of Greenbrier and Pocahontas County, including the watershed for Knapp Creek. A description of this information will be included in the final source water protection plan.
 - Pocahontas County has a prescription medication disposal program that takes in unwanted medication on a regular basis, but the program needs promoted and enforced. Cindy reported that when they hold the events, very few people show up to take advantage of the service and she thinks it's mainly because people don't know about it.
 - The team noted that, while gas drilling was not a primary concern of theirs, the Atlantic Coast pipeline project was likely going to be constructed very near Knapp Creek upstream of the intake. This project has the potential to impact the water source if the construction project is not managed properly.
 - The team requested that Drinking Water Protection Signs and Plant Tours be removed from the Implementation table. They did report that some of the city drains may have sings/markers indicating that the drain runs to fresh water, but they weren't sure.
 - Their primary method of contacting affected residents is the Pocahontas Count Nixle communication system. They also use social media on the Pocahontas County EM website, and have an active 911 emergency communication system for all EM responders in the county.
 - City Hall would be the location of any press conference to communicate important info to the media and public. The primary spokesperson would be Sam Felton, then Dave Johnson.
 - Sam mentioned that the water system could potentially draw water from Marlin Run, which drains from Smith Lake. He was unsure about the flow requirements for the alternative but

E-1 April 2016

suggested that an impoundment could be built to supply the town if needed. The team also brought up the possibility of running fire hoses and using fire engines to pump water from the Greenbrier to the plant if necessary. If their intake went down currently, this would be their first backup option.

When discussing the public engagement part of the process, Mayor Felton mentioned that he
regularly publishes a "Mayor's Corner" section in the local paper. In the most recent edition, he
wrote about source water protection and the ongoing planning efforts. He plans to use this
format to reach out the public about the plan and get feedback.

E-2. List of Regulated Databases

In addition to PSSC that have been identified by the WVBPH and local efforts, water systems should consider data available from regulatory agencies, such as the US Environmental Protection Agency (USEPA) and the WV Department of Environmental Protection (WVDEP). The follow presents examples of regulatory program databases that should be considered.

USEPA

CERCLIS:

The Superfund program was created by the Comprehensive Environmental Response, Compensation, and Liability Act, amended by the Superfund Amendments and Reauthorization Act. The acts established authority for the government to respond to the release/threat of release of hazardous wastes, including cleanup and enforcement actions. Long-term cleanups at National Priority List sites last more than a year while short term /emergency cleanups are usually completed in less than a year. CERCLIS is a database used by the USEPA to track activities conducted under its Superfund program. CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA. Sites are investigated because of a potential for releasing hazardous substances into the environment are added to the CERCLIS inventory. USEPA learns of these sites through notification by the owner, citizen complaints, state and local government identification, and investigations by USEPA programs other than Superfund. Specific information is tracked for each individual site.

NPDES:

The National Pollutant Discharge Elimination System (NPDES) database identifies facilities permitted for the operation of point source discharges to surface waters in accordance with the requirements of Section 402 of the Federal Water Pollution Control Act. Point sources are discrete conveyances such as pipes or man-made ditches. Industrial, municipal, and other facilities must obtain permits if their discharges go directly to surface waters. The NPDES permit program controls water pollution by regulating point sources that discharge pollutants into public waters.

RCRA:

This database has records for all hazardous waste, generators, and transporters as defined by the Resource Conservation Recovery Act (RCRA). Hazardous waste as defined by RCRA is waste material that exhibits ignitability, corrosivity, reactivity, or toxicity. Hazardous waste comes in many shapes and forms. Chemical, metal, and furniture manufacturing are some examples of processes that create hazardous waste. RCRA tightly regulates all hazardous waste from "cradle to grave" (i.e., from manufacture to disposal).

TRI:

The Toxics Release Inventory (TRI) is a publicly available USEPA database that contains information on toxic chemical releases and other waste management activities reported annually by certain covered industry groups as well as federal facilities. This inventory was established under the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) and expanded by the Pollution Prevention Act of 1990.

WVDEP

Abandoned Mine Sites:

Abandoned mine features compiled by the Office of Abandoned Mine Lands and Reclamation (AMLR) of the WVDEP. The AMLR eliminates damage that occurred from mining operations prior to August 3, 1977 and is funded by the AML fund. It corrects hazardous conditions and reclaims abandoned and forfeited mine sites. Typical AML features include high walls, portals, refuse piles, and mining structures such as tipples.

AST:

Above Ground Storage Tanks are regulated by the WVDEP and are subject to specific standards. Any facility using an AST should contact the WVDEP Water and Waste Management office for current requirements and further advice at 304-926-0495 or http://www.dep.wv.gov/WWE/abovegroundstoragetanks/Pages/default.aspx.

Coal Dams:

Point and polygonal mining related impoundments regulated by the WVDEP Division of Mining and Reclamation (DMR).

LUST:

The WVDEP became the lead agency for administering the Leaking Underground Storage Tank (LUST) Program with the USEPA's authorization in September 1997. Since then, the WVDEP has overseen the cleanup of released regulated substances, primarily petroleum products. Such releases can originate from overfilling, spilling, or leaking tanks and piping. To report a release from an underground storage tank system, contact the Office of Environmental Remediation at 304-238-1220, ext. 3506. After hours releases should be reported to the statewide emergency spill line at 800-642-3074.

Solid Waste Facilities:

Municipal and non-municipal waste landfills and waste transfers stations are regulated by the WVDEP Division of Waste Management.

Oil and Gas Wells:

The Office of Oil and Gas maintains records on active and inactive oil and gas wells. It also manages the Abandoned Well Plugging and Reclamation Program.

UIC:

The Underground Injection Control (UIC) program is designed to ensure that fluids injected underground will not endanger drinking water sources. The Division of Water and Waste Management regulates Class 5 wells. These wells include agriculture drainage wells, improved sinkholes, industrial disposal wells, storm water wells and septic systems that have the capacity to serve 20 or more people. The following state codes address UIC regulations; 47CSR9, 47CSR13 and 47CSR55. The Division of Mining and Reclamation oversees all mining UIC permits.

UST:

The purpose of the Underground Storage Tank (UST) Section is to regulate underground storage tanks that contain petroleum or hazardous substances to determine compliance with state rules and federal regulations. West Virginia has had full program approval from USEPA since February 1988.

E-4 April 2016

Confidentiality Statement

I have reviewed and understand the requirements to maintain PSSC data in a confidential manner (64CSR3). While I may discuss PSSCs in general terms, I understand that I am not permitted to release exact locations, characteristics or quantities of contaminants to the general public.

Town of Marlinton Designees:

Name and Title	Phone	Email	Signature	Date
SAM Felton, Mayor	304/ 799-4315	townof Mar (inton @ Frontier net. Net	Sen Velton	3-2-2016
Cindy Wilford Doc Co. Health Dec	304 + 799-4154	Cirdy. H. Wilfong Dwo.gov	Cyclinia A. Wafay	3-2-2014
- 0 1 1 .	304-799-4624	tooo Kopocahontasemergency.com	D= 10	3-2-16
J.P. Duncau assistant Chief		marlinton fire agmail Low	Dum	3-2-16
Grazia Apolinares		pocahontas h20 @gm	ail.com Cufus	3-2-16.
David K. Johnson		town of Marlinton @ Frontier net. Net	Dave K. Tolur	3-2-16
Don morrison member		Donsauction Dyahoo	D by	3-216
		J	I am Morri	
				, and a second

Do your part to keep contaminants out of our children's source water!

Contaminants

Cleaning Products

Automotive Products

Fuel Oil

Furniture Strippers

Oil-based Paints

Sewage

Lawn and Garden Products

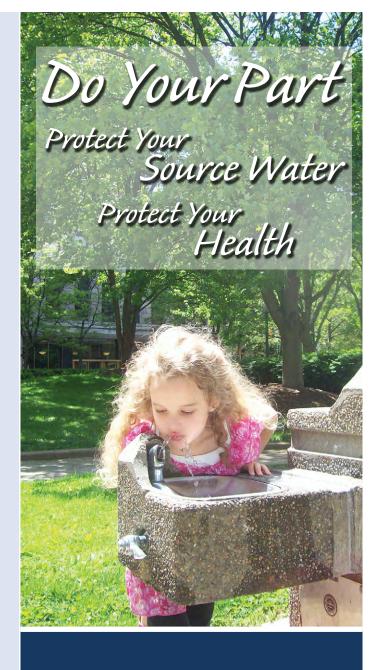
Sediments

Pharmaceuticals

Source Water Links

www.wvdhhr.org/oehs/eed/swap/ www.epa.gov/safewater/index.html www.epa.gov/watersense/ http://orsanco.org

For Kids


www.epa.gov/safewater/kids/index.html www.epa.gov/watersense/kids/index.html www.groundwater.org/kids/

Contacts

WV Department of Health and Human Resources Source Water Assessment and Protection Program 350 Capitol Street, Room 313 Charleston, WV 25301-3713 phone: (304) 558-2981 fax: (304) 558-4322

e-mail: EEDSourceWaterProtection@wv.gov

Prepared by Tetra Tech
In cooperation with the WVDHHR Source Water
Assessment and Protection Program

Drinking water is essential for life. Learn what you can do to protect your drinking water sources.

Making choices to protect and conserve the source of your drinking water will help keep you, your family, and neighbors safe and healthy now and in the future.

Do Your Part to Protect Source Water

- ✓ Recycle used oil and other automotive products at a service center. Don't pour them on the ground or down storm drains. Storm drains can lead directly to your source water.
- ✓ Fix leaks from your automobile and clean up spills.
- ✓ Apply fertilizers and pesticides as directed. Consider natural alternatives to chemicals.
- ✓ Don't flush pharmaceuticals.
 - Dispose by mixing with coffee grounds or kitty litter, sealing in a container, and placing in the trash. Organize a collection day with a pharmacy and local police department.
- √ Take unwanted household chemical waste, such as cleaners, oils, and paints to proper waste collection sites. Don't dump down your sink, toilet, or storm drains. Consider organizing a collection day in your community.
- ✓ Check for leaks at heating fuel tanks and install pads to catch accidental leaks or spills.
- ✓ Report unused water wells to your utility or WVDHHR.
- ✓ Inspect your septic system regularly and pump every 5-10 years.

Do Your Part to Conserve Source Water

- ✓ Turn off the water when you brush your teeth and take shorter showers.
- Wash full loads of clothes and dishes.
- ✓ Don't use your toilet to flush trash.
- ✓ Fix leaking faucets, toilets, and lines. Consider installing toilets, faucets, and appliances designed to save water.
- ✓ Water your lawn and garden in the morning.
 Consider installing a rain barrel at your downspouts to collect rain to water your lawn and garden, instead of using treated water.
- ✓ Use native plants in landscape that don't need extra watering. Use mulch to hold moisture.
- ✓ Don't let your garden hose run when washing your car.
- ✓ Don't panic if you are asked to conserve during a drought. Your utility

will respond to water shortages based on your normal water use. Running extra water in your home during a drought will make it more difficult to respond to the water shortage.

Marlinton Mayor's Corner

By Sam Felton

Water Source **Protection Planning**

the 2014 chemical spill and water contamination along the Elk River in Kanawha County could be an overturned changed everything with re- tanker truck in Knapps gard to extra safeguarding Creek. Shutting the water our public water systems. plant down and isolating or The good that comes of that diverting any possible conterrible event, is a closer taminant from the intake monitoring awareness and would be the first step in the planning for every "what if" event of an emergency. One bacenario.

of the study and provides information about the utility's the treatment facility. ability to prevent contamito an emergency, if neces-

The goal of contingency planning is to identify and document how the utility will prepare for and respond to any drinking water shortages or emergencies that may occur, due to short and/or long water interruption or incidents of spill or contamina tion. Our plan is to de everything we can to protect the intake, treatment plan and distribution system from any contamination. The Town of Marlinton is review

POSTMASTER: Send address changes to:

The Pocahontas Times

206 Eighth Street Marlinton, WV 24954 Telephone 304-799-4973 Fax 304-799-6466 www.pocahontastimes.com

EDITORIAL: jsgraham@pocahontastimes.com sastewart@pocahontastimes.com

cdmoore@pocahontastimes.com DISPLAY ADVERTISING: kjtotten@pocahontastimes.com shgiven@pocahontastimes.com

SUBSCRIPTIONS. LEGAL ADVERTISING. **OBITUARIES AND** COMMUNITY NOTICES: jnh@pocahontastimes.com

ing its ability to use alternative sources, minimize water loss, meet future demands and operate during power outages.

The town's biggest threat islative Rule 64 CSR 3, the booms around the intake. Town of Marlinton has par- This can be effective, but ticipated in a study to evalu- only for contaminants that ate its existing contingency float on the surface of water. planning and feasibility of Alternatively, utilities can source water alternatives. choose to pump floating con-This contingency planning taminants from the water or study documents the results chemically neutralize the contaminant before it enters

The amount of time an nants from entering the water intake can remain closed system and a plan to respond depends on the water infrastructure and certain other variables. For instance, even the day of the week would be a factor. One thing is for sure,

the longer an intake remains closed, the better.

Pullillore

Raw and treated water storage capacity in the event of an emergency also becomes extremely important. Storage capacity can directly determine how effectively a water system can respond to a contamination event, and how long an intake can remain closed. Information regarding the water shortage response capability is a work in progress. A required meeting is scheduled for March.2.

Statewide initiatives for emergency response, including source water related incidents, are being develop- ed. These include the West commonly used method of Virginia WaterWastewater To fulfill the requirements diverting contaminants from Agency Response Network of Senate Bill 373 and Leg- an intake is establishing (WV WARN) wwwarn.org; and the Rural Water Association Emergency Response Team, wvrwa. org

JOWSHOE UND ATTOR

HIGHER SCHO **ARE NOV**

Applications car www.snowsho

> Deadline fo March

POCAHONTAS COUNTY

Sunday	Monday	Tuesday
	February 29 Baseball, Softball and Track Practice Begins	1 FASFA Due Pro Start Hospitality Cup
The state of	After Sch	ool Tutoring
6	7	8
		Boys I
13	After Scho	ol Tutoring
13	14 Spring Sports Pictures	15
	7 p.m. Board of Education Meeting	
20	After Scho	of Futoring
		22
	Di-1	Regional Math Field Day - NRAO 4:30 p.m. Reseball LI

PCC_Knapp's Creek Septic System Program Report

Name of participants

The Greenbrier Valley District Conservation District (GVDCD), the Water Resources Task Force (Coordination - WRC), the Pocahontas County Department of Health & Human Resources (DHHR), the WV Department of Environmental Protection, the USDA - Natural Resources Conservation Service and the WV Conservation Agency

Amount of money allocated up to date

\$80,000 for all pump and replacement projects

Amount of money used so far

Roughly \$26,000

Expiration Date

September 2016

Rationale & Main Goals:

This main goal of partnership to provide this program is to tackle the deficient onsite private septic systems in the Knapp's Creek and tributaries Watershed Area. When septic systems work properly, these systems become effective at managing household waste as well as avoiding nonpollution point source downstream streams. In this case. Knapp's Creek Watershed is a source of water supply to the town of Marlinton, therefore its importance.

This partnership with the Conservation Agency intends to fulfill the Implementation Plan Goal of: "contributing to the management and protection of the county's water resources" by collaborating with other ongoing watershed based plans that currently are implemented in the county.

Methodology used

- Septic System Replacement Prioritization Assessment study commended and completed by Downstream Strategies.
- Introduction of the to the County Commissioners.
- informative Sessions in community settings close to the watersheds populations.
- Public Outreach through press releases.

Activities for implementation

- Started public outreach through Informative Sessions (April 9th & May 28th, 2015)
- The Pocahontas County DHHR shared their office resources at their location.
- Landowners interested approached this office and met with the Water Resources Coordinator (WRC) so they could be explained about the program and procedures.
- All applications sent were approved by the GVDCD during regular board sessions.
- GVDCD took care of all the process after the application was submitted and approved.
- WRC maintained a control log of applicants and served as a link between landowners and GVDCD to ensure payment to landowners.

Program Outputs

16

Number of landowners applied to the program (package submitted)

10

Number of REPLACEMENT SEPTIC SYSTEMS

6

Number of PUMP SEPTIC SYSTEM projects

8

Number of PUMPS OR REPLACEMENTS COMPLETED

6

Number of projects paid already

\$4300-\$4800

Average cost of septic system replacement

\$450 - \$680

Average cost of septic system pump

Issues found that blocks the flow of completion...

Lessons learned after less than year of implementing this program...

- 1) Through word of mouth people are spreading the benefits of this costshare program.
- 2) Septic System contractors are being part of sharing this program.
- 3) We are promoting economic development by offering opportunities to local contractors.
- 4) The benefits of this program are seen in the results of the periodic monitoring done by the Conservation Agency.